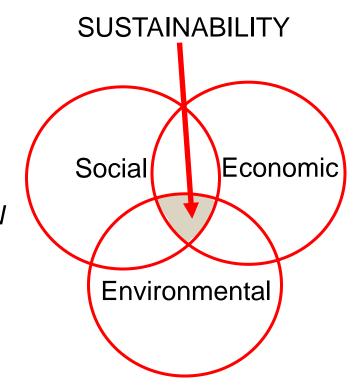


Do you speak Sustainable Construction? Steel – Recyclability and Flexibility

Bruxelles, May 20th, 2010



Sustainable Construction

SOCIAL =
 Health and Safety, Comfort

Aesthetics, Urban Redevelopment

- ECONOMIC = Life Cycle Costs, Maintenance, Value preservation, Functionality, Flexibility, Reusability = Reconstruction,
 → ECODESIGN
- ENVIRONMENTAL = Climate effects, Waste (= landfill), Energy consumption, Raw material, Recycling

Strengths

Recycling

! Cost-effectively without subsidies.

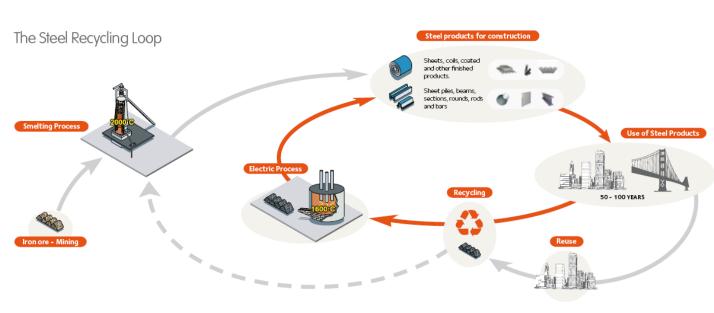
Steel = 100% recyclable and structural shapes are to 99% recovered and recycled without any loss of quality. UPCYCLING to high strength steel is standard practice.

- Flexibility / Adaptability of buildings = High
- Low waste / Off-site fabrication = Safer and cleaner
- Good engineering properties maximise performance
- Quick and efficient erection = Reduced nuisances (=preassembled modules)
- Reusability / Reconstruction = ECODESIGN

- Energy intensive production
 (= same applies to concrete)
- Transport of raw materials (= minor effect on carbon footprint)

Strengths

- Recycling
 - ! Cost-effectively without subsidies.
 - Steel = 100% recyclable and structural shapes are to 99% recovered and recycled without any loss of quality. UPCYCLING to high strength steel is standard practice.
- Flexibility / Adaptability of buildings = High
- Low waste / Off-site fabrication = Safer and cleaner
- Good engineering properties maximise performance
- Quick and efficient erection = Reduced nuisances (=preassembled modules)
- Reusability / Reconstruction = ECODESIGN



- Energy intensive production
 (= same applies to concrete)
- Transport of raw materials (= minor effect on carbon footprint)

Natural resources- Raw material High savings through scraps

- Steel is worldwide the most recycled material, Cost-effectively!
- Recovered Steel is 100% recycled. Recovery rate of sections is 99%!
- Steel is recycled indefinitely
- Steel is upcycled

14 tonnes of steel recycled every second around the world!

Strengths

Recycling

! Cost-effectively without subsidies.

Steel = 100% recyclable and structural shapes are to 99% recovered and recycled without any loss of quality. UPCYCLING to high strength steel is standard practice.

- Flexibility / Adaptability of buildings = High
- Low waste / Off-site fabrication = Safer and cleaner
- Good engineering properties maximise performance
- Quick and efficient erection = Reduced nuisances (=preassembled modules)
- Reusability / Reconstruction = ECODESIGN

- Energy intensive production
 (= same applies to concrete)
- Transport of raw materials (= minor effect on carbon footprint)

Socio cultural sustainability Urban redevelopment and renovation

Advantages:

<u>Reduced waste, noise, dust, jobsite work and</u> <u>traffic interference</u> by pushing pre-fabrication including modular construction while <u>improving</u> <u>safety and comfort</u> for workers and residents.

Steel is the material of choice

Strengths

Recycling

! Cost-effectively without subsidies.

Steel = 100% recyclable and structural shapes are to 99% recovered and recycled without any loss of quality. UPCYCLING to high strength steel is standard practice.

- Flexibility / Adaptability of buildings = High
- Low waste / Off-site fabrication = Safer and cleaner
- Good engineering properties maximise performance
- Quick and efficient erection = Reduced nuisances (=preassembled modules)
- Reusability / Reconstruction = ECODESIGN

- Energy intensive production
 (= same applies to concrete)
- Transport of raw materials (= minor effect on carbon footprint)

Ecodesign = Reuse = Second life

Design of intelligent modular steel structure for easy dismantling and reconstruction

Car Park at Munich Airport 1972: rebuilt in 2 parts: 1995 in Neuss and 1996 in Gross-Gerau

Christ Building Hannover - 2000: rebuilt as:

- a cloister in Volkenroda (D)
- and a laboratory in Aachen

Ecodesign: Second Life of Steel Structures

1958 Brussels

2008 Prag (CZ)

1958 Brussels

2008 Breendonk (B)

Concrete Industry Strengths and Weaknesses

Strengths

- Local sourcing of raw materials (steel scrap is local raw material too)
- High thermal capacity (steel-concrete composite has it too)
- Inherent fire, sound and vibration properties

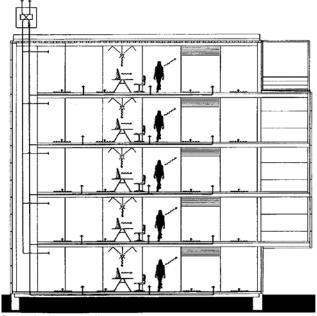
 (well engineered steel structure has it too, -- performance and costefficiency)

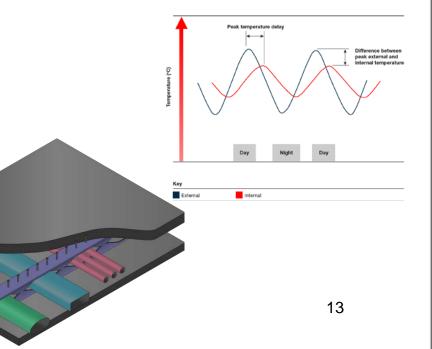
- Energy intensive production
- Downcycling not recycling
- Can be difficult to demolish and extract valuable components
- Heavy and resource inefficient
- High levels of waste

Concrete Industry Strengths and Weaknesses

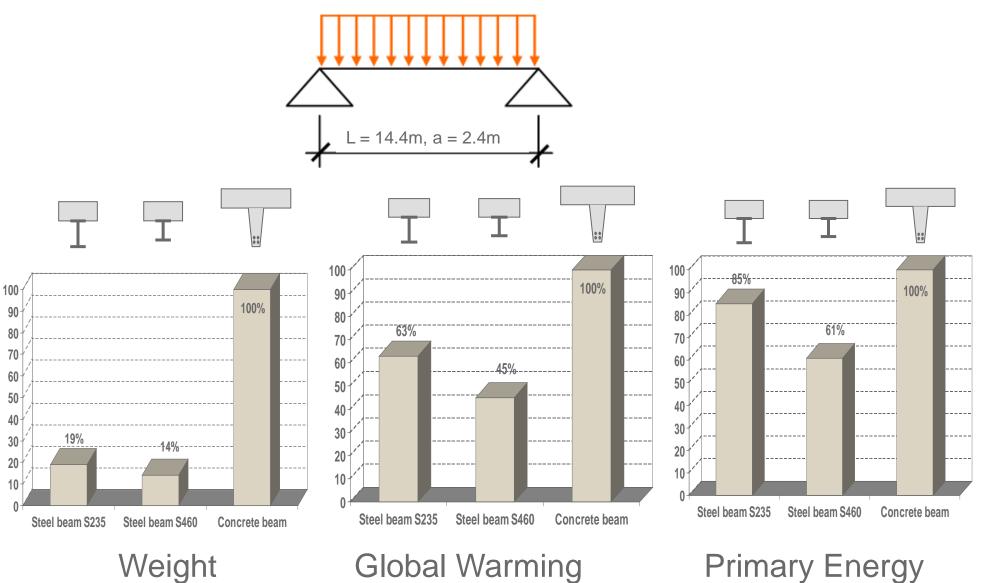
Strengths

- Local sourcing of raw materials (steel scrap is local raw material too)
- High thermal capacity (steel-concrete composite has it too)
- Inherent fire, sound and vibration properties

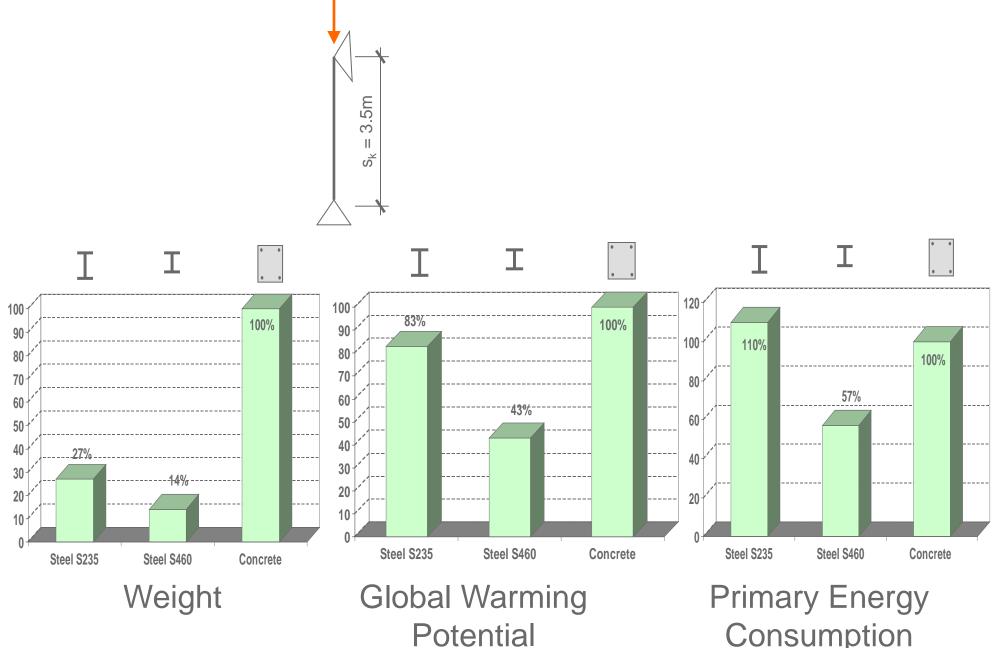

 (well engineered steel structure has it too, -- performance and costefficiency)


- Energy intensive production
- Downcycling not recycling
- Can be difficult to demolish and extract valuable components
- Heavy and resource inefficient
- High levels of waste

Energy consumption Steel fosters low energy construction


- Over 80% of the energy (and consequently CO₂ emissions) result from the service life of a building.
- The combination of steel solutions with high performance insulation is reducing drastically the thermal losses of a building.
- Optimally tailored thermal mass with minimal weight is cost-effectively only possible by combining structural steel with concrete.

Life Cycle Assessment of beams



Potential

Consumption

Life Cycle Assessment of columns

Consumption

Summa	Sections production Recycling of		ArcelorMittal
	scrap	Steel	
	Embodied energy / CO ₂ per functional unit →	<mark>(2)</mark>	
	Recycling rate	00	
	Recycled content	0	
	Waste	©	
	Flexibility / Reuse	©	
	« Green » assessment ratings	© 8	
	Thermal mass	© 8	
	Transport / local sourcing	© 8	16
1			1