Zručnosti a príklady
Národný školiaci materiál

WP4. VÝSTUP 4.1.2

Pripravil: Trnavský samosprávny kraj v spolupráci s iEPD
Editori slovenskej verzie: L. Krajcsovics, H. Piško, T. Pišková
September 2014

Časť A: Udržateľnosť v procese výstavby – všeobecné informácie pre širšiu veršnosť
Časť B: Certifikačné nástroje, príklady certifikovaných budov – informácie pre odborníkov
Časť C: Nástroj CESBA, spôsob jeho použitia – konkrétne podklady pre hodnotiteľov

Revízia 8. 11. 2014

Tento projekt je realizovaný v rámci operačného programu CENTRAL EUROPE a spolufinancovaný Európskym fondom pre regionálny rozvoj.
AUTORI:
Editori slovenskej verzie: Lorant Krajcsovics, Henrich Piňko, Tatiana Piňková

A-I Aktuálny stav udržateľnosti v stavebníctve
Renata Vrabelová, Dalibor Borák, Lorant Krajcsovics, Tatiana Piňková, Henrich Piňko

A-II Čo je udržateľnosť v procese výstavby
Renata Vrabelová, Dalibor Borák, Lorant Krajcsovics, Tatiana Piňková, Henrich Piňko

A-III Obmedzenie negatívnych vplyvov výstavby na ŽP
Renata Vrabelová, Dalibor Borák, Lorant Krajcsovics, Tatiana Piňková, Henrich Piňko

A-IV Prečo certifikovať, prečo spoločný nástroj
Renata Vrabelová, Dalibor Borák, Lorant Krajcsovics, Tatiana Piňková, Henrich Piňko

B-V Príklady budov posúdených nástrojom CESBA
Renata Vrabelová, Jiří Čech, Miroslav Misař, Tatiana Piňková

B-VI Certifikačné nástroje, cesta k CESBA
Lorant Krajcsovics, Renata Vrabelová, Dalibor Borák

C-VII CESBA: spoločné posudzovanie udržateľnosti budov
Lorant Krajcsovics

Spracované v rámci realizácie projektu CEC5
Spracované v rámci vedeckej úlohy VEGA
Architektúra a urbanizmus 2020 - smerovanie k takmer nulovému energetickému štandardu, schválenej pod číslom 1/0559/13.
## OBSAH

### 1 Aktuálny stav udržateľnosti v stavebníctve

- **1.1** Aktuálny stav problematiky ........................................................................ 6
- **1.1.1** Vystavané prostredie ................................................................................ 6
- **1.1.2** Požiadavky udržateľnosti vo výstavbe ......................................................... 6
- **1.2** Vplyv výstavby na globálne problémy životného prostredia ......................... 7
- **1.2.1** Životný cyklus budovy ................................................................................. 7
- **1.2.2** Geopolitický kontext udržateľnosti vo výstavbe .......................................... 8
- **1.2.3** Sociálne a kultúrne súvislosti ..................................................................... 8
- **1.3** Udržateľná Európa ......................................................................................... 8
- **1.3.1** Udržanie doterajšieho životného štandardu ................................................ 9
- **1.3.2** Európska legislatíva z hľadiska udržateľnosti ............................................. 9
- **1.3.3** Udržateľnosť v slovenskej legislatíve .......................................................... 10
- **1.3.4** Verejné budovy z hľadiska udržateľnosti a energetickej efektívnosti .......... 13
- **1.4** Súčasný stav – neudržateľnosť ....................................................................... 13

### 2 Čo je udržateľnosť v procese výstavby

- **2.1** Čo je udržateľnosť ....................................................................................... 15
- **2.1.1** Interpretácia pojmu “udržateľnosť” .............................................................. 15
- **2.1.2** Definícia udržateľnosti ............................................................................... 15
- **2.1.3** Čo je udržateľnosť vo výstavbe .................................................................... 15
- **2.1.4** Vplyvy výstavby na životné prostredie ....................................................... 17
- **2.1.5** Cesta k udržateľnému stavaniu ................................................................ 17
- **2.1.6** Agenda 21 a ďalšie dokumenty ................................................................. 17
- **2.2** Udržateľnosť v architektúre a urbanizme ...................................................... 18
- **2.2.1** Urbanistický a architektonický koncept a udržateľnosť .............................. 18
- **2.2.2** Od kolísky ku kolíške ............................................................................... 19
- **2.2.3** Udržateľnosť pohľadom architektov .......................................................... 20
- **2.3** Udržateľnosť a ekonomické súvislosti ......................................................... 22
- **2.3.1** Cena a hodnota budovy .............................................................................. 23
- **2.4** Sociálne kritériá udržateľnosti ..................................................................... 24
- **2.5** Environmentálne kritériá udržateľnosti ........................................................ 24
- **2.6** Holistický / celostný pohľad na výstavbu ....................................................... 25
- **2.7** Inteligentné budovy ..................................................................................... 25

### 3 Obmedzenie negatívnych vplyvov výstavby na ŽP

- **3.1** Udržateľnosť v urbánnom kontexte ............................................................... 27
- **3.2** Metódy implementácie návrhu .................................................................... 28
- **3.2.1** Integrované projektovanie ........................................................................... 29
- **3.2.2** Riadenie výstavy a kontrola kvality .............................................................. 29
- **3.2.3** Budova počas svojho životného cyklu ......................................................... 31
- **3.3** Voľba materiálov a technológií pre efektívne budovy .................................... 32
- **3.3.1** Ekologický koncept, využitie energie prostredia ......................................... 32
- **3.3.2** Konštrukcie, tepelné mosty, neprievzdušnosť .......................................... 33
- **3.4** Obnoviteľné zdroje energie .......................................................................... 34
- **3.4.1** Slnečná energia ......................................................................................... 34
- **3.4.2** Energia vody a vetra .................................................................................. 35
- **3.4.3** Energia biomasy ....................................................................................... 35
3.4.4 Energia prostredia ........................................................................................................... 36
3.4.5 Kogenerácia ..................................................................................................................... 36
3.5 Menežment vody ............................................................................................................... 36
3.5.1 Využitie dažďovej vody ................................................................................................. 37
3.5.2 Separácia odpadových vôd ......................................................................................... 37
3.5.3 Oddelené zásobovanie pitnou a užitkovou vodou ...................................................... 38
3.6 Zlepšovanie kvality vnútorného prostredia ................................................................. 38
3.6.1 Materiály a kvalita vnútorného prostredia ................................................................. 38
3.6.2 Tepelná, akustická a svetelná pohoda, výmena vzduchu ...................................... 38
3.7 Voľba materiálov z environmentálneho hľadiska ...................................................... 41
3.7.1 Využitie miestnych materiálov ................................................................................... 41
3.7.2 Prírodné a obnoviteľné materiály ............................................................................. 42
3.7.3 Recyklované a recykovateľné materiály ................................................................. 45
3.7.4 Materiály s nízky emisiami znečisťujúcich látok .................................................. 45
3.7.5 Predchádzanie emisiám formaldehýdu .................................................................. 47
3.8 Kategorizácia budov z hľadiska energetickej efektívnosti ..................................... 49
3.8.1 Nízkoenergetický dom ............................................................................................... 49
3.8.2 Ultránízkoenergetický dom ..................................................................................... 50
3.8.3 Pasívny dom .............................................................................................................. 50
3.8.4 Aktívny dom .............................................................................................................. 52
3.8.5 Nulový, plusový, autonómny dom LK HP ............................................................ 53
3.8.6 Takmer nulový dom LK HP ..................................................................................... 54
4 A-IV Prečo certifikovať, prečo spoločný nástroj ................................................. 57
4.1 Dôvody pre certifikáciu, využiteľnosť spoločného nástroja ........................................ 57
4.2 Projekt CEC5 .................................................................................................................... 57
4.2.1 Zadanie a zmysel projektu CEC5 ............................................................................ 57
4.2.2 Priebeh projektu CEC5 ............................................................................................ 58
4.2.3 Všeobecné rozšírenie výstupov projektu ............................................................... 59
4.3 Prínosy certifikácie pre účastníkov procesu výstavby ............................................... 60
4.3.1 Investor, developer .................................................................................................. 60
4.3.2 Majiteľ, potenciálny kupec ..................................................................................... 60
4.3.3 Užívateľ objektu ...................................................................................................... 60
4.3.4 Projektant, realizácia firma .................................................................................... 60
4.3.5 Spoločnosť .............................................................................................................. 60
4.3.6 Cena za tieto prínosy .............................................................................................. 60
4.4 Praktické využitie nástroja CESBA ............................................................................ 61
4.4.1 Verejné obstarávanie ............................................................................................... 61
4.4.2 Verejná architektonická súťaž ............................................................................ 61
4.4.3 Proces projektovania .............................................................................................. 62
4.4.4 Proces výstavby ....................................................................................................... 62
4.4.5 Kontrola kvality ...................................................................................................... 62
4.4.6 Politické rozhodovanie ......................................................................................... 62
5 B-V Prikády budov posúdených nástrojom CESBA .......... 63
5.1 Life Cycle Tower One ................................................................................................... 63
5.2 Ústav sociálnej starostlivosti, Lidmaň ....................................................................... 64
5.3 Školiace centrum “Otázník” spoločnosti INTOZA ..................................................... 66
6 B-VI Certifikačné nástroje ......................................................................................... 67
Zručnosti a príklady
Národný školiaci materiál SK – projekt CEC5, výstup 4.1.2

6.1 Charakteristika nástrojov na posudzovanie udržateľnosti.............................. 67
6.2 Jestvujúce certifikačné nástroje ........................................................................... 67
6.2.1 BREEAM ........................................................................................................... 68
6.2.2 LEED ................................................................................................................. 68
6.2.3 DGNB  Deutsche Gesellschaft für Nachhaltiges Bauen ................................. 68
6.2.4 SBToolCz  Sustainable Building Tool (Cz) ...................................................... 68
6.2.5 Príklady ďalších nástrojov ................................................................................ 69
6.3 Cesta k CESBA ....................................................................................................... 70
6.3.1 Certifikácia v súkromnej a verejnej sfére ......................................................... 70
6.3.2 EU a harmonizácia - certifikácie udržateľnosti budov ...................................... 71

7 C-VII Používanie nástroja CESBA ........................................................................... 72
7.1 Kvalita miesta a vybavenia .................................................................................. 73
7.1.1 Napojenie na verejnú hromadnú dopravu A 1 ..................................................... 73
7.1.2 Kvalita miesta a dostupnosť služieb A 2 .......................................................... 73
7.1.3 Bicyklové stojiská A 3 ....................................................................................... 74
7.2 Kvalita plánovacieho procesu .............................................................................. 75
7.2.1 Architektonická súťaž a preverenie variantov B 1 ............................................ 75
7.2.2 Definovanie overiteľných energetických a environmentálnych cieľov B 2 ........ 75
7.2.3 Zjednodušený výpočet hospodárnosti v životnom cykle B 3 ............................. 76
7.2.4 Produktový menežment - zabudovanie „ekologických“ stav. výrobkov B 4 ...... 77
7.2.5 Projektové hodnotenie a energetická optimalizácia projektu B 5 .................. 79
7.2.6 Informácia pre používateľa B 6 ......................................................................... 80
7.3 Energia a zásobovanie .......................................................................................... 81
7.3.1 Potreba energie na vykurovanie C 1 ................................................................. 81
7.3.2 Potreba energie na chladenie a vetranie C 2 ..................................................... 82
7.3.3 Primárna energia C 3 ......................................................................................... 82
7.3.4 Ekvivalent emisií CO₂ C 4 ................................................................................. 83
7.3.5 Monitorovanie spotrieb energie C5 ................................................................. 83
7.3.6 Spotreba vody / využitie dažďovej vody C6 ...................................................... 84
7.4 Zdravie a komfort .................................................................................................. 84
7.4.1 Tepelná pohoda v letnom období D 1 ................................................................. 85
7.4.2 Riadené vetranie – hygiena a ochrana proti hluku D 2 ...................................... 86
7.4.3 Denné osvetlenie D 3 ....................................................................................... 86
7.5 Stavebné materiály a konštrukcie ...................................................................... 87
7.5.1 OI3 ekologický index obálky (či celkovej hmoty) budovy E 1 ......................... 87
7.6 Očakávaný vývoj CESBA ...................................................................................... 89
7.6.1 Udržateľnosť iniciatívy CESBA ......................................................................... 89
7.6.2 Očakávaný vývoj hodnotiaceho nástroja CESBA ............................................ 89

8 Literatúra .................................................................................................................. 90
A-I  AKTUÁLNY STAV UDRŽATEĽNOSTI V STAVEBNÍCTVE

1.1  Aktuálny stav problematiky

Naše územie patrí k tímu, ktoré sú po stáročia modifikované zásahmi ľudskej činnosti. K týmto zásahom patri aj výstavba, ovplyvňujúca najmä naše sídla, no aj volnú krajinu. Každá novopostavená budova sa stáva súčasťou priestoru pretváraného človekom. Človek ako užívateľ budovy, ním užívaná budova a okolity priestor - všetci sú súčasťou jedného celku a vzájomne na seba pôsobia. Akákoľvek, hoci drobná zmena niektoré zložky ovplyvni aj ostatných. Stavebná kultúra určuje vystavané prostredie pre človeka a ovplyvňuje tak zásadným spôsobom kvalitu života. Architektúra a stavebná kultúra je preto témou, ktorému sa štát musí venovať a politicky ho v systéme rozhodovania pevne ukotviť. Starostlivou o architektúru a stavebnú kultúru sa zaistia dobré sociálne, ekonomické, ekologické a kultúrne podmienky pre súčasné i budúce generácie. /Politika... 2013/

1.1.1  Vystavané prostredie

V súčasnej dobe je v oblasti územného plánovania a rozvoja miest snaha sústredená na prognózy, vyhľadávanie a pomenovanie procesov, ktoré môžu zvyšiť kvalitu života mestských obyvateľov tak, aby zásahy do mestských štruktúr boli prospěšné a zvyšovali kvalitu života v mestách.

Prechod ekonomiky zo sekundárneho sektora, založeného na výrobe, do sektora terciárneho, ktorého doménou sú služby, priniesol spoločenské zmeny, ktorých dôsledkom je masívny presun obyvateľov do miest. S rastom počtu mestských obyvateľov rastie potreba nových mestských obyvateľov.

Transformáciou ekonomických aktivít však dochádza aj k presunu niektorých podnikateľských aktivít na vidiek, čo vedie k zmene štruktúry videckých sídel. Rast sídli je významne formovaný potrebami rôznorôdych súkromných iniciatív. Výsledná podoba takto pretváraných miest a dedín má vplyv na život všetkých obyvateľov.

Budovy sú prostredím, v ktorom človek trávi 90% svojho času. Každá budova je súčasťou celku, ktorý by mal v ideálnom prípade v harmonické, esteticky vyváženej kompozícii spĺňať kritériá funkčnosti, bezpečia a pohody, teda príjemného miesta na život.

1.1.2  Požiadavky udržateľnosti vo výstavbe

Pri hodnotení miery udržateľnosti budov sú posudzované kritériá ekonomické, sociálne a environmentálne v ich vzájomnej previazanosti. Ideálnym výsledkom je stav, kedy sú aspekty zo všetkých troch sfér, vzájomne na seba pôsobia, zastúpené vo vyváženom pomere. Teda napríklad sféra ekonomická v sebe zohľadňuje nielen ekonomické, ale súčasne spoločenské a environmentálne aspekty. Táto prepojenosť platí aj pre sféru sociálnu a environmentálnu, vždy so zastúpením aspektov z oboch ďalších sfér.

S rastom populácie, požiadaviek spoločnosti a stále rastúcim využívaním ďalších, predtým nepoužívaných technológií vzrastá potreba energetického zdroja. Rastúcu potrebu energie sa taktiež zvýšia životné prostredie a je ohrozená vzájomná vyvážená trocha vyššie spomínaných sfér.

Informatíne o súvislostiach a dôsledkoch využívaných obnoviteľných a obnoviteľných zdrojov, o ich premiestňovaní a fyzickom narušovaní, ďalej o spôsobe zabezpečovania z odpadmi, s vodou a o jednoduchých možnostiach recyklácie by sa mali stať súčasťou základného vzdelenia. Je dôležité napomáhať všetko ľuďom, že každá stavba, postavená budova, je súčasťou celku a ovplyvňuje život všetkých, život na celej planéte.

Výchova k porozumeniu environmentálnych súvislostí k tomu, ako človek svojim správaním ovplyvňuje prostredie, v ktorom žije, zatiaľ nie je samozrejnosťou. Snahy o takúto osvetu a správanie sú často znehodnotené extrémom „zeleného“ prístupu, ktorýtie je formu-
lovaný v harmónii s ostatnými aspektmi kvality prostredia. Tento extrém sa bohužiaľ prejavuje aj v stavebnom procese.

V bežnej stavebnej praxi nie sú účastníci stavebného procesu oboznámení s prevážnosťou a kauzalitou činností, ktoré súvisia s výstavbou. A v stavebnom procese je vytvárané alebo pretvárané vystavané prostredie, teda životné prostredie, ktorého kvalitu určuje rad neharmonizovaných aspektov - fyzikálny, chemický, biologický a tiež kultúrný a spoločenský.

Individuálne vnímanie prostredia je ovplyvňované biologickými potrebami a schopnostami jednotlivcov a takisto bežné používaným technickým vybavením, ktoré človek v tomto prostredí používa. Pritom individuálne skúsenosti, potreby a tůžby každého človeka môžu byť veľmi odlišné. Pri návrhu modernnej udržateľnej budovy je potrebné zvažiť, ktoré požiadavky sú skutočne nevyhnutné a ktoré má zmysel v rámci udržateľnosti eliminovať.

Umiestnenie a funkcie stavby, jej prispôsobivosť zmenám, životnosť, orientácia, veľkosť, forma a konštrukcia, použité materiály, spôsob vykurovania a vetrania - to všetko dohromady určuje množstvo energie, ktorá je potrebná na výstavbu budovy a na dopravu stavebných materiálov, následne na údržbu a prevádzku budovy, na dopravu užívateľov k budove a od nej. Nie nepodstatná je tiež úvaha o spôsobe demolácie stavby.

1.2 Vplyv výstavby na globálne problémy životného prostredia

Vplyv výstavby na životné prostredie je posudzovaný podľa správania budovy, jej vplyvu na životné prostredie, a to počas celej jej existencie a prevádzky.

1.2.1 Životný cyklus budovy

Pre hodnotenie tzv. životného cyklu budov sú potrebné podrobné dátá / údaje o vlastnosťach stavby, stavebných materiáloch, technológiách a ďalších skutočností súvisiacich s existenciou budovy. Do životného cyklu budov sú zahrnuté všetky etapy, od jej vzniku až po jej zániku – človek surovín, výrobu materiálu, jeho dopravu na stavenisko, výstavbu budovy, jej prevádzku a demolíciu /Envimat 2012/.

V priebehu životného cyklu spotrebujú stavby značné množstvo zdrojov a prispievajú k premene oblastí. Výsledkom toho môžu byť významné ekonomické následky a vplyvy na životné prostredie a ľudské zdravie. Preto sa snažíme minimalizovať vplyvy stavieb na prostredie počas celeho ich životného cyklu.

Schéma životného cyklu budovy /Kierulf 2013/, koncept posúdenia udržateľnosti /Tolgyessiová 2013/ Schéma požiadaviek na vybudované prostredie, jeho ľudské a vnútorné podnety ukazuje, ako sa požiadavky udržateľnosti, plynúce zo spoločenských záujmov, vzťahujú k vybudovanému prostrediu, stavbám a výrobkom.

Komplexnou analýzou životného cyklu budovy sa zaobrá hodnotenia LCA - „Life Cycle Assessment“, ktoré posudzuje vplyv stavby počinajúc získovaním materiálov pre výrobu stavebných konštrukcií cez zátáž počas prevádzky a aktívneho života stavby až po likvidáciu. pozitívneho odpadu po zániku, demolácií stavby /Pifko 2013/.

Tento projekt je realizovaný v rámci operačného programu CENTRAL EUROPE a spolufinancovaný Európskym fondom pre regionálny rozvoj.
Podľa tohto hodnotenia môže byť budova v režime:

- „Cradle to Grave“ / „Od kolísky po hrob“ alebo
- „Cradle to Gate“ / „Od kolísky k bráne (továrné)“ alebo
- „Cradle to Cradle“ / „Od kolísky ku kolíske“.

Posledne menovaný, uzavretý cyklus tvori slučku, kde záverečnú fázu cyklu predstavuje recyklácia, ktorá je súčasne počiatočnou fázou nového zrodu. Týmto cyklyom sa budeme bližšie zaobierať v II. kapitole tohto školiaceho materiálu.

1.2.2 Geopolitický kontext udržateľnosti vo výstavbe

Základnou potrebou pre prežitie v súčasnom svete je energia. Vlastníctvo energie a strategických surovín je tiež jedným zo základných prostriedkov uplatňovania moci v súčasnom svete. Ten, kto vlastní zdroje energie a surovín, môže určovať ich cenu, diktovať podmienky ich poskytnutia, a v rastúcej oblasti globalizovaného sveta tak priamo presadzovať svoje záujmy. Výstavba, stavebné technologické procesy a prevádzkovanie budov spotrebujú štyridesiat percent celkového objemu užitej energie v Európe, takisto spotreba neobnoviteľných zdrojov a surovín pre výrobu a dopravu stavebných materiálov je obrovská.

Pre Slovenskú republiku, rovnako ako pre celú Európu sú oblasťami, odkiaľ pochádza základný objem energie a surovín pre stavebnictvo, oblasti Arabského sveta a Rusko. Pre nás doteraz stále nie celkom zrozumiteľné kultúrno-сполоčenské východiská arabského sveta a histórická skúsenosť s Ruskom nie sú príliš spoľahlivým základom pre plánovanie bezpečnej stratégie našej budúcej existencie.

1.2.3 Sociálne a kultúrne súvislosti


Pre podporu záujmov väčšiny má v rámci sídelnej jednotky význam vytváranie miestnej pospolitosti, kedy sa jednotlivci snažia nájsť prosperné riešenie spolôčne, s toleranciou a porozumením individuálnymi odlišnosťami. Sídelné celky by mali vždy fungovať ako ekosystémy, kde je cieľom vytváranie zdravého spoločenského prostredia a cestou je decentralizácia právomoci, ktorá posilňuje miestnu demokraciu. V takomto meste, časti mesta alebo dedine, kde miestni ľudia majú možnosť podieľať sa na vytváraní prostredia, v ktorom žijú, a na rozhodovanie o ňom, je prirodzenou súčasťou života komunity podpora miestnych kultúrnych a spoločenských zvykov a tradícií. Úlohou architekta je vytvárať rozmerovo, esteticky, funkčne a ekonomicky vyvážené, harmonické prostredie, miesto prijímané pre život. Vždy ide o skladbu jednotlivostí, ktoré sú komponované do jedného celku. Každý detail ovplyvňuje výsledok a celok sa odráža v jednotlivostach. Toto je princíp holizmu, celostného prístupu. Architekt s holistickým prístupom vychádza z miestnych možností, podmienok, prírodných, spoločenských a kultúrnych daností, historických skúseností a s ich zohľadnením a začlenením do plánovania zmien a nových prvkov, do konkrétneho miesta, pretvára vystavané prostredie.

1.3 Udržateľná Európa

S ohľadom na súčasnú svetovú ekonomickú situáciu, danú závislosťou na zdrojoch, je aj udržateľné narábanie so zdrojmi jednou z podmienok zachovania demokracie v Európe. A tak európske politické i administratívne orgány hľadajú cesty, ako závislosť na - možno len zdanlivo - neistých zdrojoch a nie je možné sa z nej vymanit

Z hľadiska udržateľnosti života ľudska na Zemi je sťahovám, že veľký dôraz kladíme na úsmy neobnoviteľných surovín a energie. Keďže „nejlacnejšie a najbezpečnejšie sú energie a suroviny, v ktoré nespotrebovali“, snažím sa o zmeny, ktorých realizácia by mala viesť k obmedzeniu spotreby neobnoviteľných zdrojov energie a surovín.
1.3.1 Udržanie doterajšieho životného štandardu

Je otázkou, či je udržanie súčasného životného štandardu vôbec možné, ak požadujeme znižiť vplyv výstavby na životné prostredie. Aby sme boli schopní realizovať princípy udržateľnej výstavby, je potrebná zmena myslenia, prístupov a konania.

„Koncepcia udržateľného rozvoja je najčastejšie chápána viacrozmerne: ako vzájomne previazané ekonomické, environmentálne a sociálne aspekty rozvoja ľudskej spoločnosti. Dva pojmy, ktoré sa najčastejšie spájajú práve s posuzovaním sociálnych aspektov udržateľného rozvoja, sú kvalita života a blahobyt.“ /Hák 2010/

Je zrejmé, že kvalitu života je možné posuzovať z objektívneho a subjektívneho pohľadu. „Blahobyt je v kontexte meranie kvality života termín používaný pre vyjadrenie cieľového stavu udržateľného rozvoja. V environmentálnych súvislostiach je koncept ľudskeho blahobytu podrobnie rozpracovaný v „Miléniovom hodnotení ekosystémov“ /maweb 2014/, ktoré vychádza z predpokladu, že kvalita ľudskej života je zásadné závislá na stave ekosystémov. Medzi ľuďmi a ekosystémami existujú komplexné vzťahy, akékoľvek zmeny v životnych podmienkach ľudí priamo alebo nepriamo vyvolávajú zmeny v ekosystémoch a na druhej strane zmeny v ekosystémoch majú za následok zmeny v ľudskom blahobyte.

Meradlá udržateľnosti nášho spôsobu života je tzv. ekologická stropa. Jeden zo spoluautorov tohto pojmu William Rees ekologickú stopu prihližuje takto: „Koľko plochy (krajiny a vodných ekosystémov) je treba na úrovni Sýrie /Happy... 2014/“ pre pochopenie našeho životného štýlu, a na zneškodnenie všetkých odpadov, ktoré pri tom produkujeme?“ /Hrá... 2014/

Ak by všetci obyvatelia sveta sprevádzali toľko ako „vyspelý Západ“, potrebovali by sme na dlhodobé užívanie sa celé tri planéty. Teraz žijeme na dlh a na úkor chudobných krajín. Slovenská republika by potrebovala takmer päťnásobok svojej plochy, aby nás udržateľne „uživila“ pri dnešnej spotrebe. Napriek veľké stopping zdrojov však v meraníach blahobytu podľa ekologického kvalitných zdrojov, ktoré potrebujeme ku svojmu súčasnému životnému štýlu, a na zneškodnenie všetkých odpadov, ktoré pri tom produkujeme?“ /Hrá... 2014/

Medzi siedmou požiadavkou na udržateľnosť bola zakotvená v smernici o energetickej hospodãrnosti budov EPBD (2002/91/ES), aktualizovaná EPBD II (2010/31/ES) obsahuje štyri základné požiadavky: • od 31. 12. 2020: všetky nové budovy budú mať udržateľnú energiu pri výstavbe i rekonštrukcii budov. /Smerenca... 2010/ • do roku 2020, členské štáty znižia spoločné produkciu skleníkových plynov min. o 20%, • do roku 2020 zvýšia členské štáty spoločné energetickú účinnosť o 20%, • do roku 2020 zvýšia členské štáty spoločné podiel energie z obnoviteľných zdrojov na 20% spotreby. /Smerenca... 2010/

Špecifikácia požiadaviek na šetrnosť stavebných výrobkov k životnému prostrediu je uvedená v Nariadení Európskeho parlamentu a Rady EÚ č. 305/2011 a nahradza doteraz platnú Európsku smernicu Rady 89/106/EHS o stavebných výrobcoch /Nariadenie... 2011/. Nové nariadenie stanovuje harmonizované podmienky uvádzania stavebných výrobkov na trh, v siedmich požiadaviek na udržateľné využívanie prírodných zdrojov je uvedené: „Stavby musia byť navrhnuté, zhotovené a zbúrané tak, aby bolo zabezpečené udržateľné využívanie pri-
rodných zdrojov a: a) recyklovateľnosť stavieb, ich materiálov a časť po zbúraní; b) trvanlivosť stavieb; c) použitia surovin a druhotných materiálov šetrných k životnému prostrediu pri stavbe. /Nariadenie... 2011/

1.3.3 Udržateľnosť v slovenskej legislatívnej

Základom stavebného práva je v súčasnosti (august 2014) zákon č. 50/1976 Zb. v znení neskorších zmien, no pripravuje sa jeho novela a preto sa tu odvoláme na jej návrh. V novom „stavebnom zákoní“ je udržateľnosť venovaná váčšia pozornosť... /Návrh... 2014/

Súčasné chápanie pojmu trvalo udržateľného rozvoja a jeho globálneho etablovania sa začalo prijíťm správami Naša spoločná budúcnosť (Our Common Future) Valným zhromaždením OSN v roku 1987 (WCED, 1987), pričom táto správa obsahuje aj definíciu, ktorá je najčastejšie používaná a hovorí, že „udržateľný rozvoj je taký rozvoj, ktorý umožňuje uspokojovanie potreby súčasných generácií bez ohrozenia možnosti budúcich generácií zabezpečiť ich vlastné potreby“ a a „proces, v ktorom využívanie zdrojov, smerovanie investícií, orientácia technologického rozvoja a inštitucionálne zmeny sú všetky vo vzájomnej harmonii a podporujú tak súčasny ako aj budúci potenciál naplňať ľudské potreby a nároky“. /Národná stratégia... 2000/. Ku koncu deväťdesiatych rokov sa z terminológie udržateľného rozvoja spolocnosti začínajú odvodzoať požiadavky na výstavbu. U nás vznikla pri Slovenskom ústave technickej normalizácie technická komisia TK 112 Trvalá udržateľnosť /Ohradzanská 2013/


- mechanická odolnosť a stabilita
- bezpečnosť v prípade požiaru
- hygiena, zdravie a životné prostredie
- bezpečnosť a prístupnosť pri používaní
- ochrana proti hluku
- energetická hospodárnosť a udržiavanie tepla
- trvalo udržateľné využívanie prírodných zdrojov.

Siedma požiadavka na stavby, trvalo udržateľné využívanie prírodných zdrojov, bude podporená súborom noriem, ktoré má pripraviť a trvanlivosť stavieb; c) použitia surovin a druhotných materiálov šetrných k životnému prostrediu pri stavbe." /Nariadenie... 2011/

Každá stavba musí od 1. júla 2013 v súlade s uvedeným nariadením spostavené budovy by mali mať ľubovlnne a druhotne využívať prírodné zdroje. Pri jej realizácii by sa mali používať ekologické stavebné materiály, ktorých výroba bola energeticky úsporná a úsporná by mala byť aj spotreba surovin. Takto postavené budovy by mali mať nižšie náklady na energiu a prevádzku ale zároveň musia byť pohodlné a zdravé pre užívateľa. Ďalším kritériom je ich optimálne zasadenie do sociálnokultúrneho prostredia (výber pozemku, zaťaženie životného prostredia, kvalita vnútorného prostredia, sociálne aspekty atď.) . Pri ich posudzovaní sa používa niekoľko hodnotiacich metód (napr. BREEAM, LEED) založených na technických normách pričom sa hodnotí nie-
kôľko kategórií, oblastí alebo ukazovateľov. Na Slovensku nemáme veľa budov, ktoré by sa mohli pochváliť takýmto príkladom. Takže ide skôr o výzvu, aby sa takéto stavby stali súčasnými trendmi vo výstavbe.


• spoločný rámec pre metodiku výpočtu energetickej hospodárnosti budov (EHB)
• minimálne požiadavky na EHB, ich prvkov a technických systémov
• národné plány na zvyšovanie počtu budov s takmer nulovou spotrebou energie
• energetická certifikácia budov alebo jednotiek budov
• pravidelná kontrola vykurovacích a klimatizačných systémov v budovách
• nezávislé systémy kontroly energetickej certifikácie.

Energetická certifikácia (§ 5 zákona) je spravidla povinná, robi sa po dokončení novej budovy alebo významej obnovy existujúcej budovy. Nová vyhláška priniesla viacero zmien:

• hodnotenie a preukázanie splnenia požiadaviek sa týka budov, ale aj ich prvkov a ľudí
• globálny ukazovateľ celková dodaná energia sa mení na primárnu energiu
• hodnotí sa vplyv obnoviteľných zdrojov energie na celkovú dodanú energiu do budovy
• menia sa niektoré faktory primárnej energie
• mení sa vzor energetického certifikátu
• spresňuje sa obsah správy k energetickému certifikátu.


• nízkoenergetická úroveň výstavby pre nové aj obnovované budovy od 2013 (trieda B)
• ultranízkoenergetická úroveň výstavby pre všetky nové budovy po 2015 (trieda A1)
• budovy s takmer nulovou potrebou energie po 2020, verejné budovy po 2018 (trieda A0).

Toto sprísňovanie požiadaviek sa už dostalo do aktualizovanej normy (viď nižšie), prípravuje sa na nezávislý systém kontroly energetických certifikátov.

Na záver spomeňme ešte požiadavky smernice č. 2012/7/EÚ: dlhodobá stratégia investícií do obnovy fondu budov (prehľad fondu, opatrení, podpora, vyščlenenie úspor) a vzorová úloha verejných budov (obnova 3 % ročne, zoznamy, alternatívny prístup).

Udržateľnosť a energetická hospodárnosť budov sú oblasti, ktoré sa dynamicky vyvíjajú – o pár mesiacov tu určite budú nové právne predpisy, ktoré budú do tejto oblasti zasahovať. Aktuálne predpisy o tejto problematike vždy nájdete na stránkach Ministerstva výstavby, dopravy a regionálneho rozvoja. /Ohradzanská 2014/
Technická normalizácia je jedným z dôležitých činiteľov, ktoré určujú všeobecnú technickú a kultúrnou uroveň spoločnosti. V oblasti výstavby sa týka všetkých procesov od návrhu konštrukcie, posúdenia navrhnutých stavieb, cez stavebné práce, posudzovanie vhodnosti výrobkov na použitie, posudzovanie existujúcich konštrukcií, návrh obnovy konštrukcií až po použitie materiálov po demolácii a recyklácii. /Tölgyessyová 2013/


**STN EN 15643-1 (73 0901)**
Trvalá udržateľnosť výstavby. Posudzovanie udržateľnosti budov. Časť 1: Všeobecný rámec (1. 3. 2011). Táto európska norma poskytuje všeobecné princípy a požiadavky prostredníctvom súboru noriem na posudzovanie budov z hľadiska environmentálnych, sociálnych a ekonomických vlastností so zohľadnením technických charakteristik a funkčnosti budovy. Posudzovanie kvantifikuje príspevok posudzovaných stavieb k trvalo udržateľnej výstavbe a k trvalo udržateľnému rozvoju.

**STN EN 15643-2 (73 0901)**

**STN EN 15643-3 (73 0901)**

**STN EN 15643-4 (73 0901)**
Trvalá udržateľnosť výstavby. Posudzovanie udržateľnosti budov. Časť 4: Rámec na posudzovanie ekonomických vlastností (1. 10. 2012). Táto európska norma tvorí časť súboru európskych noriem na posudzovanie budov a poskytuje špecifické principy a požiadavky na posudzovanie ekonomických vlastností budov so zohľadnením technických charakteristik a funkčnosti budovy. Posudzovanie ekonomických vlastností je jeden aspekt posudzovania udržateľnosti budov podľa všeobecného rámca EN 15643-1.

**STN EN 15978 (73 0902)**
Trvalá udržateľnosť výstavby. Posudzovanie environmentálnych vlastností budov. Výpočtové metódy (1. 8. 2012). Táto európska norma špecifikuje výpočtovú metódu založenú na posudzovaní životného cyklu LCA (Life Cycle Assessment) a ďalších kvantifikovaných environmentálnych informácii s cieľom posúdiť environmentálne vlastnosti budov a poskytuje prostriedky na podanie správy a interpretáciu výsledkov z posudzovania. Prístup k posudzovaniu pokrýva všetky fázy životného cyklu budovy a je založený na údajoch získaných z environmentálneho vyhlásenia o produktoch, z ich „informačných modulov“ (EN 15804) a z ďalších informácií nevyhnutných a relevantných na uskutočnenie posudzovania.

**STN EN 15804 (73 0912)**
Trvalá udržateľnosť výstavby. Environmentálne vyhlásenia o produktoch. Základné pravidlá skupiny stavebných produktov (1. 8. 2012). Táto európska norma poskytuje základné...
pravidlá pre skupinu produktov (PCR) v procese environmentálneho označovania typu III pre stavebné výroby a služby. Posudzovanie sociálnych a ekonomických vlastností na úrovni produktov nie je zahrnuté v tejto norme.  

**TNI CEN/TR 15941 (73 0910)**  
Trvalá udržateľnosť výstavby. Environmentálne vyhlásenia o výrobkoch. Metodika na výber a použitie generických údajov (1. 8. 2010).  

**STN EN 15942 (73 0911)**  

V súčasnosti sa v rámci CEN/TC 350 pripravuje technická správa na posudzovanie aspektov udržateľnosti inžinierskych stavieb. Na rozšírenie oblasti pôsobenia a tvorby noriem od výrobkov a budúcnosti po mestá a „komunity“ / sidelné útvary sa na podnet francúzskeho normalizačného inštitútu AFNOR zakladá nová technická komisia Smart and sustainable cities and communities – Rozumné a udržateľné mestá a komunity. Výsledky normalizačnej práce tejto komisie pomôžu mestom vyvíjať integrované schémy, ktoré sú aj udržateľné aj „chytre“, ideovo sa práca spája s cieľmi Energia 2020 – stratégia pre konkurencieschopnú, udržateľnú a bezpečnú energiu. /Tölgyessyová 2013/

### 1.3.4 Verejné budovy z hľadiska udržateľnosti a energetickej efektívnosti

Verejné budovy v Európe patria k najhorším príkladom energetickej efektivity stavieb a využitia obnoviteľných zdrojov energie. Doteraz neexistujú žiadne ekologické kritériá, ktoré by sa mohli použiť ako štandardný model pre posudzovanie ponúk vo verejnom obstarávaní.  

Vypracovanie projektovej dokumentácie budov nielen s energeticky úsporným riešením, ale i so splnením ostatných požiadaviek na stavbu podľa cen a „komunity“ / sidelné útvary sa na podnet francúzskeho normalizačného inštitútu AFNOR zakladá nová technická komisia Smart and sustainable cities and communities – Rozumné a udržateľné mestá a komunity. Výsledky normalizačnej práce tejto komisie pomôžu mestom vyvíjať integrované schémy, ktoré sú aj udržateľné aj „chytre“, ideovo sa práca spája s cieľmi Energia 2020 – stratégia pre konkurencieschopnú, udržateľnú a bezpečnú energiu. /Tölgyessyová 2013/

### 1.4 Súčasný stav = neudržateľnosť

Slovo udržateľnosť v slovenčine bohužiaľ svojim slovným základom vyjadruje stav, ktorý by sa mal „udržať“. Avšak základnou požiadavkou na udržateľnosť (z anglického originálu „sustainability“) by mala byť schopnosť pohybu, konkrétnych zmien, ktoréúdržateľnú a premyslenejšej reakcie na objektívne vykazované zmeny v spôsobe života. Mal by to byť „proces, udržiavaný v chode neustálym starostlivostou“. /Šíp 2013/
Pojem udržateľnosti je v bežnej praxi stavebného procesu v našich podmienkach zatiaľ spájaný najmä, a niekedy iba, s tepelno-technickými vlastnosťami stavby. Výsledkom snah o energetické úspory počas prevádzky budovy sú dnes už veľmi populárne nízkoenergetické, pasívne, prípadne aktívne domy (aktívne domy v tomto materiáli nazývame plusovými).

Prístup k plánovaniu a rozvoju je teraz charakterizovaný postavením človeka ako vedúcej, všetko ovládajúcej a riadiacej zložky, človeka na vrchole pyramídy. Postupne si začíname uvedomovať, že človek prírodu nieriadí a že ňudstvo je súčasťou prírody, jedným z účastníkov života na Zemi.

„Projektovanie a výstavba udržateľných budov sama o sebe nestačí. Musíme sa zaoberať podmienkami vzniku udržateľnej architektúry ako celku, udržateľného priestoru, udržateľného vystaveného prostredia.“ /Borák 2012/

Ak zhnieme súčasný vplyv výstavby a prevádzky európskych budov na životné prostredie, predstavuje zťaženie 40% celkovej spotreby energie, 35% celkovej produkcie emisií CO₂ a 25% celkovej produkcie odpadov. Ďalšou zťažou stavebnictva je významný podiel na spotrebe neobnoviteľných materiálových zdrojov a vody.

Súčasná prax vo výstavbe sa teda dá zhodnotiť skôr ako neudržateľná, ale rovnako, ako sa rozšírila a stala populárnom informácia o možnosti energetických úspor pri prevádzke budov, so vzrastajúcim povedomím široké verejnosti o obmedzených zdrojoch našej planéty je potreba šíriť aj osvetu o ďalších cestách k zachovaniu a „udržaniu“ Zeme ako planéty prijémovej na pobyt aj budúcim generáciam.
A-II ČO JE UDRŽATEĽNOSŤ V PROCESE VÝSTAVBY

2.1 Čo je udržateľnosť

Podmienkou realizácie myšlienky udržateľnej výstavby je zmena prístupov, myšlenia a konania. Je dobré opakovane si uvedomovať, že príroda, darykaťa všetkého života, sama žiadnu energiu navše nepotrebuje a neprodukuje taktiež žiadne odpady.

2.1.1 Interpretácia pojmu „udržateľnosť"

Pojem „udržateľnosť“ vznikol prekladom anglického slova „sustainability“. SUSTAINABLE - prídavné meno, podľa výkladového slovníka /Cambridge, 2014/: Able to continue over a period of time = schopný pokračovať, zotrvať viac ako určitú dobu; Causing little or no damage to the environment and therefore able to continue for a long time = spôsobujúce žiadnu alebo malú škodu na životnom prostredí a teda byť schopný trvania po dlhý čas. Vybrané významy - preklad slova:

- Sloveso SUSTAIN: udržať, podporovať, vydržať, niesť, podopierať, pomáhať
- Prídavné meno SUSTANABLE: trvalý, udržateľný, obhájiteľný
- Prídavné meno SUSTAINED: podporený, živelný, trvalý, udržiavaný

2.1.2 Definícia udržateľnosti


Anglický výraz „sustainable development“ je do slovenčiny prekláný ako „udržateľný rozvoj“ a takto používaný. A to napriek nepresnosti prekladu a nemožnosti postihnúť slovenčinom pôvodný anglický význam. Hoci protirečenie tohto slovného spojenia je častou témy jazykové polemiky o jeho význame, stalo sa obľúbeným heslom. S ohľadom na spojenie dvoch slov s protikladným významom sa logickéjšie snažiť sa skôr o udržateľnosť než o udržateľný rozvoj.

V súlade s vývojom za posledných dvadsať rokov došlo k postupnej zmene smerovania - v roku 1990 bolo všeobecné úsilie nasmerované k rozvoju, v súčasnej dobe je skôr snaha o udržanie alebo výhľadovo aj znižovanie životného štandardu.

2.1.3 Čo je udržateľnosť vo výstavbe

„Architektúra a staviteľstvo boli od doby románskych stavieb odborom, v ktorom sa najviac odražal stav technického myšlenia, kreativity, citu a duše, spôsob myšlenia a filozofie. Filozofia architektúry a staviteľstva vzniká tam a vtedy, keď ‘názor na svet’ prekrája obyčajnú skúsenostnú úroveň a stáva sa teóriou nového spôsobu života, všetkých jeho hodnôt, všetkých životných cieľov. Život je v tomto novom postoji podriadený omužiť komú nižšiemu a následkom toho má aj novú motiváciu. Preto je tento nový názor postojom človeka, ktorý si uvedomuje svoju univerzálnu zodpovednosť, jeho prax nie je už prax úzko súkromná, ale je to prax pre ľudí, pre ich existenciu, pre prístrešia vyhovujúce ich inteligencii. Cieľ rozumu a ľudskej inteligencie, bystrosti a múdrosti leží v nekonečne, je možné len smerovať k nemu každým dňom, každou zmysluplnou činnosťou ontogenéznou a evolučnou formou. To sú udržateľné hodnoty ľudského rozumu, dôtupu a zmysl tu tvoriť v dokonalości k hodnotám ľudského bytia, k hodnotám trvalým, ktoré sú pre ľudstvo jedinečným pokladom ich existenčných hodnôt, radosťou a šťastím v podmienkach reálneho sveta, byvania, aké si človek zaslúži. Preto hovoríme o udržateľnosti výstavby budov, pretože nie je iného východiška a nes iných hodnôt.“ /Garlík 2012/
Filozofia bývania sa na rozdiel od mnohých technických vied nezaobera len tým, čo môže byť popísané a spôsobené, experimentálne overené, filozofia prekračuje empiriu, je fundamentálnym predpokladom všetkého teoretického poznania. Nezostáva iba teoretickou snímkou skutočnosti, „vyjadrnenim epochy v myšlienkach“ a nič viac, ale vytvára a dotvára skutočnost. Udáťať sa zo všobecného pohľadu je to, čo sme si chceli a mohli zaobstarat, súčasne to môžeme a budeme chcieť teraz aj v budúcnosti používať a jeho obstaraním a používaním neobmedzime možnosti budúcom generáciam. Život v súlade s prírodou je jediný spôsob, ktorý dáva šancu na život na Zemi tiež budúcim generáciám. Každý človek má rovnakým dielom právo na bohatstvo Zeme, právo na život v zdravotnom prostredí.

Udržateľný spôsob výstavby je taký, keď sú požadované vlastnosti a funkcie stavby splnené s minimálnym nepriaznivým vplyvom na životné prostredie, ideálne so súčasným zlepšením ekonomických a spoločenských podmienok, ktoré majú priaznivý vplyv na zvýšenie kvality a kultúry prostredia - postupne od lokálnej úrovne po úroveň globálnu.

Každá budova je postavená v určitom ekonomickom rámci a nie je udržateľná, ak sa jej hodnota v období životného cyklu prinajmenšom nerovná nákladom spojeným s jej existenciou. Budovy sústredené na vymedzenú plochu tvoria mesta. Mesta sú koncentrovaným zoskupením budov a tvoria živý organismus, ktorého život sa prejavuje metabolizmom hmotných tokov. Systém hmotných tokov môže byť otvorený alebo uzavretý.

Otvorený systém hmotných tokov je závislý na príjme vonkajších, neobnoviteľných zdrojov energie a surovín, vrátane potravín a dát, potrebných pre fungovanie sídleného celku. Výroba sa smeruje von a tiež odpady sú vysielané tiež odviedzené mimo územia sídla a znížujú okolie.

Sídelný celok s uzavretým, alebo aspoň čiastočne uzavretým systémom hmotných tokov je charakteristicky snahe obmedziť závislosť na vonkajších zdrojoch a funguje na báze maximálne možnej recyklácie.

Príkladom uzavretého systému môže byť “smart/inteligentný“ model mestskej časti Smart City Hammarby v Stockholme / Hammarby sjostad, 2014/

Model tzv. "inteligentného mesta = Smart City" vychádza z princípu prirodzeného ekosystému, ktorý je ekologicky stabilným a dynamicky vyváženým kolobehom, s prepojenými a vzájomne sa ovplyvňujúcimi funkciami. „Ekosystém je funkčná sústava živých a neživých zložiek životného prostredia, ktoré sú navzájom spojené výmenou látok, tokom energie a odovzdaním informácií a ktoré sa vzájomne ovplyvňujú a vyvíjajú v určitom priestore a čase.“ /Zákon... 1992/.
2.1.4 Vplyvy výstavby na životné prostredie

Stavebnictvo je odvetvím, ktoré spotrebuje takmer polovicu vyrbovej energie, ďalšie dôsledky činnosti stavebného procesu súvisia so spotrebou materiálov, ich tăžbou, spracovaním a dopravou. Nasleduje energetická potreba počas prevádzky budovy, zaťaženie odpadmi a tiež zaťaženie spojené s demoláciou stavby.

Všetky uvedené aspekty sprevádzajúce výstavbu sa skladajú do výsledného celkového zaťaženia, ktorým postavená budova ovplyvňuje prirodzené prostredie.

2.1.5 Cesta k udržateľnému stavaniu

Na to, aby sa myšlienka udržateľnej výstavby dostala do stavebnej praxe, je potrebná zmena myšlienky, prístupov a konania. Je to vlastne návrat ku korenom - k základným princípm udržateľnosti, ktorých platnosť je preverená časom, ale súčasne ich chceme zladiť s najnovšími vedeckými poznatkami a technologickými možnosťami.

**UDRŽATEĽNÉ NAVRHOVANIE = EKOLOGICKÝ DESIGN**

Bežne používaný spôsob výstavby nerešpektuje prírodné princípy, je vzdialený dizajnu prírody. Hlavnou zásadou udržateľnosti je používať zdroje a materiály, ktoré sú schopné obnovy. Našou snahou by malo byť nenarušiť celistvú a prírodnú rovnováhu našej planéty, neochudobovať Zem o jej čas.

**UDRŽATEĽNOST = obnoviteľnosť**

*Lineárne a cyklické fungovanie spoločnosti /Mae-Wan Ho 2012/

2.1.6 Agenda 21 a ďalšie dokumenty


- spotrebováva minimálne množstvo energie a vody počas svojho života,
- využíva efektívne suroviny (materiály šetrné k prostrediu, obnoviteľné materiály),
- má zaistenú dlhú dobu životnosti (kvalitná konštrukcia, adaptabilita),
- tvorí menej odpadu a znečistenia počas svojho života,
- efektívne využíva pôdu,
- obnoviteľné materiály
- dobre zapadá do prirodzeného životného prostredia,
- je ekonomicky efektívna z hľadiska realizácie aj prevádzky,
- uspokojuje potreby užívateľa teraz aj v budúcnosti (pružnosť, adaptabilita, kvalita miesta),
- vytvára zdravé životné prostredie v interiéri.

„Veľké množstvo problémov a riešení obsiahnutých v Agende 21 má svoje korene na úrovni miestnych aktivít; participácie a spolupráce miestnych úradov bude preto faktorm určujúcim úspešnosť realizácie ich cieľov. Miestne úrady vytvárajú, riadia a udržujú ekonomických, sociálnych a environmentálnych infraštruktúr, dozerajú na plánovanie, formujú miestnu politiku životného prostredia a predpisy, pomáhajú pri implementácii národného a subnárodného environmentálnej politiky. Pretože sú úrovňou správy najblížšie ľudom, zohrávajú dôležitú úlohu vo výchove, mobilizácii a pri reakcii na podnety verejnosti, napomáhajú tak dosiahnutie trvalo udržateľného rozvoja.“ /Miestna...2013/
Miestna Agenda 21 (ďalej len MA21) zapadá do širšieho prúdu snahy o kvalitnú verejnú správu, ktorá je zahnutá pod pojem „good governance“ („dobré vládnutie“ čiže „dobrá správa vecí verejných“). Kvalitná správa vecí verejných musí byť (z pohľadu OSN i EU) otvorená, transparentná a zodpovedajúca sa verejným, efektívna, umožňujúca účasť verejnosti na rozhodovaní a plánovaní a založená na partnerskej spolupráci s ostatnými spoločenskými sektorami a rešpektujúca odborný pohľad na vec. Jedine taká verejná správa môže viesť k dlhodobému udržateľnému rozvoju obce či regiónu. A práve MA21 je procesom, ktorého je udržateľný rozvoj základným cieľom. Nevyhnutnou súčasťou fungujúcej MA21 bezpochyby sú:

- kvalitné strategické plánovanie a riadenie vrátane systému financovania,
- priebežná a aktívna komunikácia s verejnou - budovanie partnerstiev,
- systémové a meritné smerovanie k udržateľnému rozvoju.


2.2 Udržateľnosť v architektúre a urbanizme

„Architektúra je nachádzaním harmónie - súladu kultúry, funkcie, techniky, prostredia, mierky a estetiky, harmónii medzi jednotlivými prvkami v zlomkovito utváranom prostredí. Dobrá architektúra je založená na holistickom princípe. Stavia na vedomostiach minulého, na dôslednom skúmaní jexistujúcej skutočnosti a na predvídaní budúcnosti.“ /Borák 2012/

2.2.1 Urbanistický a architektonický koncept a udržateľnosť

Celková miera udržateľnosti vystavaného prostredia začína už pri prvotnej urbanistické koncepcii. Tá podľa požadovaných funkcií určuje štruktúru vystavaného prostredia, hustotu zástavby a tomu primeranú dopravnú infraštruktúru. Základnými kritériami pre hodnotenie urbanistické kvality sú:

- vplyv miesta, jeho kvality a klímy,
- urbanistické súvislosti - umiestnenie budovy, úmerovanie funkcií a štruktúr,
- proces plánovania.

Hodnotu budovy a mieru jej udržateľnosti zhŕňajú parametre = odpovede na otázky:

- Je konkrétna budova na určitom mieste, s jej súčasnou funkcíou, vôbec potrebná?
- Je funkcia budovy primeraná okolitému prostrediu?
- Je budova pripravená k zmene funkcie pri zmene potreby?
- Ako je to s vhodnosťou prevádzky, s jej nákladmi počas životného cyklu budovy?
- Aké budú náklady na odstránenie budovy?

„Všeobecným trendom v návrhu systémov infraštruktúry je decentralizácia. Relatívne sebestačný bunkový systém v mierke postupnosti: obydlie, obytná skupina (mestský blok), mestská štvrtť, mesto, okres, kraj, región, štát... Prechod od „smart grides“ ku „smart city“. V budúcnosti docielíte uzavretý obeh energií / vody / odpadov.

Cieľom je redukovať stratové presuny materiálov a energii, preferovať ich lokálne výrobu a spotrebu a zahnutť možnosť recyklácie. Takto koncipované systémy sú bezpečné, odolné voči preťaženiu a vedia si v rámci celej siete pružne vypomáhať. V lokálnej mierke preferovať dostupnosť všetkých aktivít pre peších, tomu musí zodpovedať koncentrácia osídlenia a byť prispôsobená hierarchia sídlí (satelitné mestecké rodinných domov okolo veľkých českých miest majú takú nižšiu zosatúcnosť obyvateľov a dochádzkové vzdialenosti, ktoré „neužívia“ bežné predajne, pekárne apod., vytvára sa monokultúra sídliska na leža).“ /Smola 2012/
Stavebný boom od deväťdesiatych rokov významne prispel k súčasnému nedobremu stavu urbanizovanej krajiny. Podľa uvedených zásad udržateľnej výstavy by pri jej plánovaní malo byť prvým krokom stanovenie našich skutočných potrieb. Ideálne by dobre vytvorená a fungujúca infraštruktúra mohla zabrániť súčasným rozpínavým tendenciam.

V súčasnej praxi zadávanie stavieb je najčastejším meradlom výberu projektanta a dodávateľa najnižšia cena a súčasne rýchloť výstavy. Týmto spôsobom veľmi rýchlo rastú stavby, o ktorých realizácií rozhoduje okamžitá potreba, a to veľmi často bez posúdenia vplyvu umiestnenia stavby do okolitého kontextu, zmyslu stavby, jej funkcie a hospodárnosti z dlhodobejšího pohľadu.

Z pohľadu hospodárnosti nakladania s už existujúcim vystavaným prostredím je potrebné si uvedomiť napríklad nasledujúce: existuje tu hodnotný základ bytového fondu, a to ako v mestskej blokovej zástavbe, tak na sídliskách, vybúdaných v druhej polovici 20. storočia. Najmä tieto sídliská sú vybavené existujúcou, dobre fungujúcou infraštruktúrou - energetickej, dopravnej, vybavenostou obchodov a služieb, vzdialávacích, športových a rekreačných zariadení. Vzhľadom k pôvodne plánovanej životnosti panelových domov a tiež s ohľadom na kvalitu vykonávania stavieb v období náchádzania socialistických plánov a následne nedostatkoň údržby je zrejmé, že ak nezvolíme demoláciu, potom domy na týchto sídliskách vyžadujú opravy a modernizáciu. Takýmto počínou bohužiaľ nie sú hromadne vykonávané zatepľovanie fasád domov, pokiaľ nie sú doplnené ďalšími, v celkových súvislostiach naplánovanými úpravami, opravami a opatreniami.


/ Borák 2012/


2.2.2 Od kolísky ku kolíske

V roku 2002 vyšla kniha amerického architekta Williama McDonougha a nemeckeho chemika Michala Braungarta s názvom Cradle to Cradle: Remaking the Way We Make Things /McDonough 2014/. Termín „Cradle to Cradle“ (Od kolísky ku kolíske), skrátene C2C, je podľa tohto manifestu používaný k popisu modelu udržateľnosti napodobením prírodných procesov s cieľom výsledného prospechu pre životné prostredie, kedy majú z procesu výroby a spotreby úžitok všetky zúčastnené zložky. Východiskovým princípom tejto teórie je skutočnosť, že v prírode, v prírodobenom kolobeze, neexistuje odpad. Využívaním princípov C2C je teda možné dosiahnuť bezodpadové hospodárstvo a existenciu.

Spôsob navrhovania architektonickej kancelárie William McDonough + Partners predstavujú architekti na svojich webových stránkách nasledovne: „Cradle to Cradle nás náboj a obnovuje prírodnú zásadu a následne najvýhodnejšou súčasťou životného cyklu. Časťou, ktorá môže byť obnovovaná a znovu používaná, a tiež suťavou snažíme sa uvoľniť zázadu a uplatniť výsledného prospechu pre životné prostredie, kedy majú z procesu výroby a spotreby úžitok všetky zúčastnené zložky. Východiskovým princípom tejto teórie je skutočnosť, že v prírode, v prírodobenom kolobeze, neexistuje odpad. Využívaním princípov C2C je teda možné dosiahnuť bezodpadové hospodárstvo a existenciu."

Spôsob navrhovania architektonickej kancelárie William McDonough + Partners predstavujú architekti na svojich webových stránkách nasledovne: „Cradle to Cradle nás náboj a obnovuje prírodnú zásadu a následne najvýhodnejšou súčasťou životného cyklu. Časťou, ktorá môže byť obnovovaná a znovu používaná, a tiež suťavou snažíme sa uvoľniť zázadu a uplatniť výsledného prospechu pre životné prostredie, kedy majú z procesu výroby a spotreby úžitok všetky zúčastnené zložky. Východiskovým princípom tejto teórie je skutočnosť, že v prírode, v prírodobenom kolobeze, neexistuje odpad. Využívaním princípov C2C je teda možné dosiahnuť bezodpadové hospodárstvo a existenciu."

Spôsob navrhovania architektonickej kancelárie William McDonough + Partners predstavujú architekti na svojich webových stránkách nasledovne: „Cradle to Cradle nás náboj a obnovuje prírodnú zásadu a následne najvýhodnejšou súčasťou životného cyklu. Časťou, ktorá môže byť obnovovaná a znovu používaná, a tiež suťavou snažíme sa uvoľniť zázadu a uplatniť výsledného prospechu pre životné prostredie, kedy majú z procesu výroby a spotreby úžitok všetky zúčastnené zložky. Východiskovým princípom tejto teórie je skutočnosť, že v prírode, v prírodobenom kolobeze, neexistuje odpad. Využívaním princípov C2C je teda možné dosiahnuť bezodpadové hospodárstvo a existenciu."

Tento projekt je realizovaný v rámci operačného programu CENTRAL EUROPE a spolufinancovaný Európskym fondom pre regionálny rozvoj.
zdravie, ako pridanej hodnoty k tradičným architektonickým štandardom komodity, pevnosti a potechy.” /McDonough 2014/.

Cradle to Cradle odmietá myšlienku, že rast je škodlivý pre zdravie životného prostredia; koniec-koncov v prírode je rast dobrý. Namiesto toho propaguje myšlienku, že dobrý dizajn podporuje bohatú ľudskú skúsenosť, so všetkým, čo k tomu patrí - zábava, krása, radosť, inšpirácia a poézia - a ešte podporuje zdravé prostredie a hojnosť.

Schéma princípu „od kolísky po kolísku“:
1. 100% obnoviteľné využitie energie
2. Vodné hospodárstvo - produkcia ďalej vody
3. Pozitívny vplyv spoločenskej zodpovednosti v komunite
4. Opätovné využitie materiálov - schopnosť recyklácie, kompostovateľnosť
5. Vplyv zdravých materiálov na ľudove & prostredie

S týmto súvisia tri princípy inšpirované prírodnými systémami:
1. Všetko je zdrojom niečomu inému. V prírode ukončením života jedného systému vzniká potrava iného. Budovy môžu byť navrhované tak, aby sa dali rozložiť a bezpečne navrátiť pôde (ako biologické živiny) alebo byť opätovne využité ako vysoko kvalitný materiál pre nové produkty a budovy (technické živiny).
3. Oslava rôznorodosti. Geologické, hydrologické, fotosyntetické a výživové cykly prispôsobené miestu vytvárajú na celom svete úžasnú rozmanitosť prirodzeného života. Projekty, ktoré vychádzajú z jedinečných výziev a príležitostí, ponúkajú každých riadnych mierov, tu elegantne a efektíve „padnú na mieru“. Hodnotením životného cyklu budov sa zaoberajú aj normy spomenuté v predchádzajúcich kapitolách.

2.2.3 Udržateľnosť pohľadom architektov
„Staré zvyky vymierajú s nášou doby a my dnes priznávame, že dúfame v pokrok. Ale naša architektúra odhaľuje pravdu. Túžime po nových, masovo vyrábaných výrobkoch, ktoré dokazujú našu kúpnu silu, ale zároveň chceme staré domy. Najradšej by sme si vzali náš moderný komfort a presielili ho so sebou do bezpečnej minulosti. Nie tej, aká v skutočnosti bola, ale tej, akú si radíme predstavovať. Už si nedokážeme predstaviť novú a lepšiu budúcnosť. Všetci si pre seba prajeme novú a lepšiu minulosť.“ /Anderson 1995/

Architekt ako tvorca prostredia musí k návrhu stavby stúpiť s maximálnou zodpovednosťou k zúčastneným zložkám - teda k ľubevom a najmä k prírode, ktorej existencia je základnou podmienkou ľudského života.

Pri výstavbe budov, teda pri realizácii vystaveného prostredia, je optimálne dosiahnutie stavu, keď technický pokrok umožňuje plnenie ľudských potrieb na úrovni dobe primeraného komfortu, a to pri maximálne možnom súlade s dobrým stavom prirodzeného prostredia.

Už Marcus Vitruvius Pollio, architekt starovekého Ríma, rozoberá vo svojom jedinom spisopise Desať kníh o architektúre v prvej kapitole „Obsah staviteľstva, vzdelávanie staviteľov“ nutnosť vzdelanosti staviteľa, povedomie staviteľa o súvislostiach:
„Kto sa chce vydávať za staviteľa, musí byť zrejme vzdelaný obojstranne. Je teda potrebné, aby bol aj nádajný, aj učený vo vede… Je tiež potrebné, aby bol staveň znalý čítania a písania, skúsený s kreslacom rydom, vzdelaný v geometrii, nie nevedomý v optike, poučený aritmetikou, aby mal značné vedomosti z dejepisu, aby pozorne počíval filozofov,
aby sa vyznal v hudbe, nebol neznalý lekárstvo, zoznalí sa s rozhodnutiami právnikov a aby si osvojil vedomostí o hvezdárstve a o zákonoch nebeských." /Vitruvius 1979/

Vymenovaný obrovský záber požiada vaku na znalosti aﬁtov stavitel'skéj architektonickej profesie je teda v súčasnosti skôr nesplniteľný, ukazuje však širokú prevádzkanosť, súvislosti v odbore stavitelstvo. A aspoň pochopenie týchto súvislostí, ich řešpektovanie, je vlastné aj nadčasovou podmienkou udržateľnosti vo výstavbe.

Teda ak sa pokúsimo s jeho zodňodnením rozobrat tri vzájomne súvisiace a podmieňujúce sa zložky Vitruvioho pravidla (Formula Vitruvia: fírmitas, utilitas, venustas) vo vztahu k udržateľnosti, skončíme opať pri ich vzájomnej prevádzkanosťi:

1. FIRMITAS: pevnost/trvanlivosť - už z názvu je zrejmé, že trvanlivá stavba, dobre a kvalitne založená, postavena, s použitím kvalitných materiálov, dlho vydrží, a teda v dlhšom časovom horizonte nebude vyžadovať opravy, teda investície a nezázahne touto záťažou ani budovu, ani jej majiteľa, a ani okolité prostredie.

2. UTILITAS: užitnosť/funkcia - ak stavba dobre plní svoju funkciu, je teda užitočná a nebude v dlhšom časovom horizonte vyžadovať stavebné úpravy. Prípadne, ak je stavba dostatočne ﬂexibilná, potrebné stavebné úpravy súvisia so zmienou funkcie budú minimalizované.

3. VENUSTAS: krása/súlad - ak je stavba krásna, je všeobecný záujem na jej uchovaní aj pre budúce generácie - a teda opäť.

Z uvedeného jasne vyplýva, že z Vitruviových kritérií je najviac v súlade s prírodou kritérium krásy, teda že krása nie je s udržateľnosťou v konflikte. A to najmä ak sa vrátime opať ku starovekým deﬁniciam krásy a proporčných matematicko-geometrických pravidel pre optimálne členenie priestoru.

Aby sme vzbudili alebo obnovili snahu o dobrú architektúru, ktorá dobre slúži človeku a je v súlade s prirodzeným prostredím, je potrebné vykonávať osvetu nielen u odbornej, ale aj u laickej verejnosti, ktorá je najmasovejším konečným užívateľom vystavaného prostredia. Všeobecne je podľa Rady architektov Európy (ACE) potrebné:

• „začleniť pochopenie spoločenského a kultúrneho významu vystavaného prostredia do všeobecného, odborného a špecializovaného vzdelania,
• získat kvalitnú kontrolu nad projektovaním stavieb a neobmedzovať ju na púhe znižovanie počtu konštrukčných záväzov alebo úspory energie,
• zaviesť hodnotiace systémy spočívajúce vo vyhodnocovaní celej škály aspektov udržateľnosti vrátane schopnosti dlhý životnosť 

Skej profesie je teda v súlade so splnením dvoch predošlých pravidiel, jej určite sa uvedomuje, ale aj u laickej verejnosti, ktorá je najmasovejším konečným užívateľom vystavaného prostredia. Všeobecne je podľa Rady architektov Európy (ACE) potrebné:

• „začleniť pochopenie spoločenského a kultúrneho významu vystavaného prostredia do všeobecného, odborného a špecializovaného vzdelania,
• získat kvalitnú kontrolu nad projektovaním stavieb a neobmedzovať ju na púhe znižovanie počtu konštrukčných záväzov alebo úspory energie,
• zaviesť hodnotiace systémy spočívajúce vo vyhodnocovaní celej škály aspektov udržateľnosti vrátane schopnosti dlhého životnosti a schopnosti zásadnej adaptácie - níč, čo sa stavia v podnetu ustálovaného kvalitu, nemôže mať trvalú hodnotu,
• viac využiť prirodzené podmienky, preferovať prirodzené svetlo a vetranie,
• systematizovať skúmanie pomeru nákladov a dosiahnuté kvality vo výstavbe.

Sir Norman Foster: „Udržateľnosť je pojem, ktorý sa za posledných desať rokov značne rozšíril. Avšak podľa mojej vlastnej skúsenosti s len málo ľudí uvedomuje, čo vlastne toto slovo znamená, a čo je jeho definícia, ktorým čelíme. Budovy a činnosti v nich prevádzkané potrebovajú v priemyselne vyspelej parte sveta takmer polovinu energie, ktorú vytvárame, a sú zodpovedné za polovicu emisií oxidu uhličitého - zatiaľ čo zvyšok je takmer rovnomenne rozdelený medzi dopravu a priemysel. Udržateľnosť vyžaduje, aby sme zodpovedným riešili této rovnicu a mysleli holisticky. Umiesnienie a funkcie stavby, jej prispôsobivosť a životnosť, jej orientácia, forma a štruktúra, jej vykurovanie a vetranie podmienky udržateľnosti vo výstavbe, údržbu, prevádzku a na cestovanie do a od nej." /Foster 2008/

Mary McLeod v úvahách, reagujúcich na známy výrok Louise Sullivana /2014/ o forme a funkii: „Formálne atribúty budovy sú jej estetickými vlastnosťami. ... Dokonca sa dá pove-
dať, že forma je v podstate tým, čo odlišuje architektúru od staviteľstva. ... Ona je tým, čo tvori umenie v architektúre. Aby sme sa vrátili k rozdielu medzi staviteľstvom a architektúrou, možno povedať, že ulohou architekta je dávať funkciu formu, t. j. urobíť ju niečím viac než len funkciu. Architektúra v sebe obsahuje funkciu, ale tiež má potenciál ju rozširovať a transformovať.“ /McLeod 2006/


O šikovnom obale stavby, ktorého priekopníkmi boli Richard Buckminster Fuller a Frei Otto s návrhami preskleného zastrešenia miest, hovorí aj Martin Rajniš: „všetky organizmy majú fenomenálnu budúcnosť a vzdelávacie zariadenia s podmienkami rôznych podnebných pásiem. Ak majú byť na zmeny vo vnútri aj vonku.“ /Rajniš 2008/


2.3 Udržateľnosť a ekonomické súvislosti

Postoje, ktoré dnes ovládajú civilizáciu tejto planéty, majú svoj pôvod v priemyselnej revolúciu. Stavajú na prvé miesto jedinca a jeho prospech, s pomocou technológií sa snažia zmeniť umenie a teoretické poznatky na ľudskeho prostriedie. Z celospoločenskej a súčasne ekonomického hľadiska je dôležité snaha o harmonizáciu osobných záujmov so záujmami spoločnosti. Jedna budova postupne, ako vzniká, od zadanie investorom, ovplyvne stále sa rozširujúci počet ľudí - cez tých, ktorí ju projektujú a po tom budú, ďalej cez jej užívateľa až po tých, ktorí okolo jej denne chodia, bez toho, aby do nej kedy vstúpili. Budova však ovplynila aj ľudí, ktorí aj keď ju nikdy nevideli, ale napr. pracujú v tovární alebo žijú v mieste, kde bol vyrobený materiálos na jej stavbu.

„Dnes je už zrejmé, že pravidlá verejného obstarávania, ktorých zmysлом bol podporovať transparency verejného obstarávania a chránit investora, neúmyselne poškodzujú verejné záujmy. Obchodné súťaže, ktoré umožňujú zadávať jednotlivé projekty a výrobu prvov stavieb komukolvek na svete, vo svojom dôsledku znamenajú ohrozenie lokalnej architektonickej a kultúrnej výnimnočnosti a rozmaitosti. Ani štát, ktorý by mal byť skúseným investorom, nie je schopný náležite vyhodnotiť kvalitu projektu a životnosť stavby tam, kde je

Tento projekt je realizovaný v rámci operačného programu CENTRAL EUROPE a spolufinancovaný Európskym fondom pre regionálny rozvoj.
pod zámienkou transparentnosti a efektivity základným kritériom pre výber architekta alebo dodávateľa stavby len najnižšia obstarávacia cena. Zámreť, ktorý je zameraný na minimálnu cenu počas vykonávania, neumožňuje spracovanie detailného projektu, ktorý by definoval najlepšie možné prevedenie. Hoci to nie je ani v investorovom, ani vo verejnom záujme, je to dnes bežnou praxou. Investor, ktorý má za cieľ krátkodobú návratnosť investícií, a teda najnižší možnú obstarávaciu cenu, nech to investor súkromný či štát, nemôže spoločnosti poskytnúť budovu s dlhú udržateľnosťou.“ /Borák 2012b/

„Prvým z troch základných princípov veku nezaloženého na raste je prikladanie rovnakej váhy dnešku aj zajtrajšku. Druhým je spoločné hodnotenie vlastných záujmov a záujmov druhých. Ak by sme konali podľa tohto princípu, nepúšťali by sme sa do projektov, ktoré prevádzajú len zdroje z jednej skupiny do druhej tak, ako to rad programov v minulosti robil. ... Tretím princípom je, že niektoré veci jednoducho nie sú na predaj a nedajú sa získať ani za akúkoľvek veľkú ciastku. Môže to byť drevo, močiar, druh zvieria, ozónová vrstva alebo vlastný život.” /Douthwaite 1992/

Spriemyslenie stavebného výroby nie je vo všetkých smeroch iba prínosné. Má tiež negatívny vplyv na spoločnosť. Ničí miestne tradície, remeslo, podporuje priemernosť a uniformitu, znižuje potrebu pracovných síl, a tým vo výsledku podporuje nezamestnanosť.

Podľa ACE je pre obnovenie ekonomicky udržateľných procesov nevyhnutné:

• „odmietanie spriemysleniávania v prípadoch, keď vedie k neúčelnej štandardizácii, ku vzniku stavieb a urbanistických celkov vymykajúcich sa ľudskej mierke alebo k ničeniu miestnej kultúry,

• odmietanie spriemysleniávania v prípadoch, keď vedie k neúčelnej doprave materiálov,

• podnecovanie kvalitnej remeselnej práce prostredníctvom vhodných učebných programov, remeselných oceniení,

• podporovanie nového využitia a sanácie stavieb a použitie vhodných príbehov miestnou klimou a prostredím,

• vyhľadávanie takých stavebných metód, ktoré sú účelne z technického hľadiska a architektonicky vhodné pre kultúrny, spoločenský a individuálny život a súčasne zarucujú dlhú ekonomickú životnosť,

• posilňovanie udržateľných spôsobov projektovania, podpora výskumu na úrovni kultúrnej a sociálnej, ktorý odráža potreby spoločnosti a vytvára miestne pracovné príležitosti,

• podporovanie správneho chápania využitia metód spriemyslenenia - odstránenie škôd, ktoré nastali v koncepcii vzdialávania architektov a projektantov.“ /Architects 1995/

2.3.1 Cena a hodnota budovy

Pri posudzovaní budovy z hľadiska udržateľnosti je rozhodujúcou veličinou hodnota, ktorú budova prinesie za celý obdobie svojho životného cyklu, nie teda obstarávacia cena budovy. V tom je hlavný rozdiel voči posudzovaniu budovy pri v súčasnosti bežném projektovaní, kedy sú všetky časti stavebného procesu limitované sústredením na najnižšiu obstarávavcu cenu.

Náklady na obstaranie budovy

Projektovanie a realizácia budovy podľa zásad trvalej udržateľnosti sú nákladnejšie než výstavba budovy v bežnom štandarde. Český architekt Jozef Smola hovorí:

„Obvykle uvádzané navýšenie ceny výstavby nízkoenergetického domu (NED) v Českej republike 10-15% je oproti bežnej výstavbe objektívne spôsobené: inštaláciou systému riadeného vetrania s rekuperáciou tepla, ohrevom teplej vody solárnymi kolektormi, výrazne väčšou vrstvou tepelnnej izolácie, zložitejšími stavebnými detailami, náročnejšou koordináciou stavby. Seriózne cenové štúdie alebo reprezentatívny prieskum však dosiaľ v českých podmienkach neboli vykonané.“ /Smola 2011/
Náklady na prevádzku budovy

Pri výpočte nákladov na prevádzku budovy je nutné do výpočtu zahrnúť náklady počas celého životného cyklu budovy. Náklady na prevádzku budovy, realizovanej podľa zásad udržateľnosti, budú nižšie ako pri prevádzke štandardnej.


Tento projekt je realizovaný v rámci operačného programu CENTRAL EUROPE a spolufinancovaný Európskym fondom pre regionálny rozvoj.

V procese rozhodovania o realizácii investície je potrebné vytvoriť modelové možnosti budúcej ekonomickej situácie, ktorá stanovuje nielen finančné zdroje a toky, ale zohľadní aj možné riziká. Ich porovnávaním alebo kombináciou je možné dôjsť k najefektívnejšímu riešeniu. Pre ekonomické kritériá udržateľnosti všeobecne platí, že udržateľné je to, čo má pozitívny vplyv na miestnu ekonomiku, so zohľadnením možností využívania miestnych zdrojov, s posúdením charakteristiky obyvateľstva, zamestnanosti, úrovne služieb a bývania.

2.4 Sociálne kritériá udržateľnosti

Ku kritériám, ktoré zohľadňujú sociálne a kultúrne potreby, patria kultúrne a estetické hodnoty, tradície a zvyky v mieste stavby. Ich vplyv na zadanie a výber architekta je veľmi významný, pretože vychádza zo zvyku a vyjadruje ideálu starostlivého staviteľa.

Požiadavky na funkciu, komfort a kvalitu usporiadania priestoru, flexibilitu, identitu, možnosti spoločenského života, kultúrneho a športového vyžitia, dostupnosť, bezpečnosť súvisia tiež s regionálnymi podmienkami a zvyklostami. Nezanehnateľný je tiež obecný vztah k miestu a miestnej prírode, dôležité je rovnako aj vplyv na zamestnanosť, a teda i dôvod na pobyt v mieste.

Prostredie budov, v ktorom sa človek pohybuje, je vytvorené s použitím materiálov, výrobkov a tiež technológiou, ktoré svojim usporiadaním, zložením, vlastnosťami, funkciami a prevádzková pôsobia na prístupovom človeka. Týmto spôsobom vystavané prostredie ovplyvňuje psychické rozpoloženie človeka, jeho zdravie, náladu, a teda aj pracovnú výkonnosť, čím sa vraciame k ekonomickým aspektom a jasne sa tu ukazuje vzájomná previazanosť jednotlivých kritérií.

Sociálne prostredie, v ktorom človek vyrastá a pohybuje sa, určuje jeho prístup a správanie vo vzťahu k fyzickému prostrediu. Je v ňudskej silách ovplyvniť skladbu, usporiadanie a materiálové zloženie budovy, a teda vystavaného prostredia. A aj keď prirodné prostredie ovládať nevieme, svojím pôsobením ho ovplyvňujeme a obhľadným správaním môžeme zmierňiť alebo výrazne obmedziť vplyv ňudskej činnosti, a teda tiež obyvateľského prostredia na prirodné prostredie. Ideálom potom je, aby sa človek a jeho aktivity, vrátane tých stavebných, stali prirodzenou, nekonfliktnou súčasťou prirodného kolobehu.

2.5 Environmentálne kritériá udržateľnosti

Environmentálne kritériá udržateľnosti zohľadňujú ekologické kvality miesta, zlučiteľnosť s prirodzeným prostredím, zabezpečenie dobrých podmienok pre život a zachovanie biodiverzity. Tieto kritériá posudzujú spôsob čerpania a využívania prirodných zdrojov materiálov a energie, spôsob nakladania a hospodárenia s vodou, nakladanie s odpadmi a využívanie recyklácie.

Z hľadiska vnútorného prostredia budov je posudzovaná napr. mikroklima a jej vplyv na zdravie, s ohľadom na vonkajšie klimatické podmienky, ďalej také kvality, ako sú pocit bezpečia, pohoda, možnosť prepojenia interiéru s vonkajším prostredím.
Pre kvalitné a komfortné užívanie budovy je dôležité tiež vodné a odpadové hospodárstvo a prípadné technológie použité pre inteligentnú prevádzku budovy.

„Koncepty udržateľnosti sú veľmi komplexné a sú predmetom neustáleho štúdia. Neexistujú definitívne metódy pre meranie udržateľnosti alebo pre potvrzovanie jej dosiahnutia. Tieto všeobecné princípy neposkytujú kritériá komplexného udržateľného projektovania. Zohľadňujú inštitučné orgány a závery o udržateľnosti a technické potreby.“ /ISO-15392 2012/

2.6 Holističný / celostný pohľad na výstavbu

Podľa prehľadu uvedených kritérií je zrejmé, že všetky tri aspekty sú vzájomne previazané a vzájomne sa ovplyvňujú, teda že žiadny aspekt nepôsobí izolovaný bez odozvy v ostatných kvalitách. A vzájomná prepojenosť je tiež východiskom holističného, celostného prístupu k projektovaniu.


Vyprojektovať a realizovať budovu s optimálnym pomernom medzi vynaloženými prostrediami a získanou hodnotou je možné iba s celostným pohľadom, s pochopením súvislostí, s vedomím, že všetko súvisí so všetkým.

Snahou architektov bola vždy krásna architektúra, ktorá je harmonická sama o sebe a súčasne v súlade s prírodou. Je zrejmé, že historické stavby, ktoré sa zachovali dodnes a ktoré obdivujeme a hodnotíme ako krásne, nepatrili vo svojej dobe k tým lacným. Architektúra, ktorá prežila stáročia, bola vybudovaná odborníkmi, postavená z trvanlivých materiálov, stojí na vhodnom mieste, rešpektuje okolie a miestne prírodné podmienky, a ak jej hlavnou funkcio nebola obrana a bezpečie, môže byť aj dnes príjemná na pobyt.

Špecializácia odborov v stavebnictve spôsobila rozčlenenie stavebného procesu vrátane projektovania na samostatné, vysoko odborné časti, ktorých koordinácia je v súčasnosti hlavnou činnosťou architekta, ak chce zachovať myšlienku svojho návrhu, v súlade s okolitým prostredím, súčasne musí byť odborne zdatný, aby dokázal zaháňať technický obsah návrhov so zadaním a s potrebami investora, medzi ktoré patrí aj ekonomická efektivita stavby. Taká je úloha architekta. Rada architektov Európy preto odporúča:

- „Pripomináť si, že vytvorenie súladu medzi rôznymi požiadavkami vyžaduje viac než len znalosť plánovania, preukázanie stavebných schopností a znalosť náročných technických noriem. Výžaduje to odhodlanie usiliať sa o krásu vecí a úctu k jednotlivci a celej pla níté.“ /Architects’ 1995/

2.7 Inteligentné budovy

Pojem inteligentná budova prevzal vyspelý svet ako synonymum dobre navrhnutej, realizovanej a fungujúcej budovy, ktorá plne splňa požiadavky prevádzkovateľov, užívateľov a obyvateľov budovy. Takúto budovu je možné realizovať aj s malým technologickým záze mím, častejšie sú ale sústavy viaceroch integrovaných systémov s progresívnymi špičkovými
tehniológiami a zariadeniami. Väčšina súčasných definícií sa pokúša charakterizovať inteligentnú budovu ako budovu, ktorá je vhodná pre obyvateľov a zaistuje komfortné prostredie.

Inteligentná budova by mala splniť súbor vlastností, ktorých výsledkom je základné kriteérium udržateľnosti, a teda aj šetrenost voči prírode; musí zabezpečovať zdravé a prijemné prostredie, plniať požiadavky na funkciu, s možnosťou flexibility pri zmene spôsobu využitia. Definícia inteligentnej budovy je odlišná geograficky a zároveň sa jej výklad mení v čase. Geografická odlišnosť definícia inteligentnej budovy je determinovaná viacerými faktormi:

- Ekonomické parametre krajiny - pre výskum a vývoj v oblasti inteligentných budov musí krajina dosahovať vysoký hrubý domáci produkt, aby mala dostatočné možnosti financovania výskumných úloh v tejto oblasti.
- Sociálne prostredie - sociálna štruktúra obyvateľov krajiny produkujúcej inteligentné budy vyváženou viacúčelnosťou práce a počet obyvateľov v oblasti služieb, menej na priemysel a polnohospodárstvo. Obyvateľstvo musí mať dostatočné úrovne vzdelenia v oblasti elektrotechniky a informačných technológií,
- Kultúrne tradície obyvateľov krajiny - aby bolo možné vytvárať inteligentné budovy, je nevyhnutné určitú úroveň životnej kultúry obyvateľov, tradícia v tejto sfére priemyslu a služieb,
- Mentalita obyvateľov, ktorá ovplyvňuje najmä požiadavky na funkcie inteligentné budovy.

Správa Pracovnej skupiny CIB W098 z roku 1995, nazvaná Intelligentné a spoľahlivé budovy uvádza: „Inteligentná budova je dynamická a citlivá architektúra, štrukturálna funkcionálna metóda konštrukcie, technológie stavby a technických systémov, ktoré poskytuje každému obyvateľovi produktívne, úsporne a ekologicky prijateľné podmienky pomocou sústavnej interakcie medzi svojimi štyrmi základnými prvkami: miestom (materiál, štruktúra, priestor), procesmi (automatizácia, kontrola, systémy), správou (údržba , prevádzka) a vzájomnými vzťahmi medzi nimi.“ Uvedená definícia bola upravená výskumným ústavom inteligentných technológií, študiuja sa pokúša charakterizovať inteligentné budovy.

Pôvodná definícia inteligentnej budovy, vytvorená v rámci programu CENTRAL EUROPE a spolufinancovaného Európskym fondom pre regionálny rozvoj, sa vyúsťou na zásadné úroven, ktoré inteligentná budova môže obsahovať, patria:

- správa a ovládanie elektrických zariadení,
- správa a ovládanie zabezpečenia budovy,
- protipožiarná ochrana,
- kontrola a ovládanie tepelného a vlhkostného komfortu vnútorného prostredia,
- kontrola a ovládanie akustického komfortu vnútorného prostredia,
- kontrola a ovládanie svetelného komfortu vnútorného prostredia,
- komunikácia (hlášová, razová, dátová).

„Budúcou víziou pri navrhovaní budov je, že budovy inteligentného rozmerné budú konštruované s ohľadom na zachovanie ich hodnoty, ochranu vôd, blaha, zdravia, prevenčiu bezpečnosti a kriminality a tiež produktivitu svojich užívateľov, vyžadovateľných zdrojov a s komplexným dôrazom na efektívnu využívanie a úsporu energií.“ /Garlík, 2012/
A-III OBMEDZENIE NEGATÍVNYCH VPLYVOV VÝSTAVBY NA ŽP

3.1 Udržateľnosť v urbánnom kontexte


Ak vidieme văčšia časť obyvateľstva žije v mestách a tento trend je celosvetový. Rozvoj a plánovanie miest je ovplyvňovaný mnohými faktormi, ktoré v priebehu histórie menia svoju dôležitosť v závislosti od zmeny vonkajších podmienok. Či už sú to prirodné, ekonomické, alebo aspekty technologického pokroku, postupne sa odrážajú v štúdii mósta a charaktere verejných priestriestiev.

V súčasnosti sme svedkami nárastu cien energii a súčasne postupnými globálnymi zmenami klimá a jej vplyvov na urbanizované územia.

Ak reakciu na tieto okolnosti môžeme badať hľadanie ekologických konceptov výstavby, ktoré by vytvorili vyššie, alebo aspoň rovnakú užiteľnosť a zároveň znížili energetickú náročnosť a negatívne vplyvy výstavby na prostredie. Toto hľadanie predchádzať riešenia v oblasti architektúry (solárne domy, využívanie prírodných stavebných materiálov, nízkoenergetický domy a domy pasívne), dopravy (efektívnejšie spádom motory a hromadné spošobné dopravy) a výroby. Tieto čiastočné riešenia prinášajú čiastočný efekt vo svojich oblastiach, no rozhodujúca je ich synergia v celkovej bilancii sídelného prostredia.

Ako príklad môžeme uviesť snahu Rakúska o zniženie emisii skleníkových plynov. Bolo zriadených množstvo opatrení a podpôr na úspornú výstavbu a lepšie užívanie obnoviteľných zdrojov. Vďaka tomu vznikla množstvo nízkoenergetických a pasívnych rodinných domov na perifériách miest no zároveň narastá množstvo individuálnej dopravy, ktorá zvyšuje emisie skleníkových plynov. V oblasti emisii z dopravy prišlo o smena a rozhodlo aleb nárastu.

Jedným z príkladných riešení je koncepcia sídliska, ktoré vzniklo pri meste Linz - mestské časť Pichling, nazývané tiež Solarcity Linz. Vzniklo ako reakcia na demodnenné dochádzanie desiatok tisíc ľudí za prácou. Mesto sa rozhodlo pre výstavbu obytnej zóny pre 12000 obyvateľov A koncipovalo ju v zmysle požiadaviek dlhodobej udržateľnosti. Základnými pílermi boli nízkoenergetický výstavba, využívanie obnoviteľných zdrojov, preferovanie mestského hromadnej dopravy (električka) a ekologické hospodárenie s vodou.


Tu je vytvorená možnosť zamestnať časť obyvateľstva bez potreby dochádzania za prácou.

Základom vykurovacieho systému bola séria porovnávacích štúdií vykurovacích systémoch z hľadiska investícií a environmentálnej efektívnosti. Výsledkom tejto štúdie bolo, že najefektívnejšie zásobovanie tepla je z centrálneho zdroja plynom s využitím kogeneračnej jednotky na výrobu elektrickej energie a tepla.

Tieto dva príklady prakticky znázorňujú koncepciu tvorby udržateľných sídiel, kde jednotlivé aspekty spisievať k celkovej udržateľnosti celku.

**Mestá a letné prehrievanie**

S postupnou zmenou klímy začína byť v našich mestách čoraz váčší problém leteň prehrievania. Hlavné v centrách váčších mest môžeme pozorovať vznik teplotných ostrovov, ktorých priemerná teplota je o niekoľko stupňov vyššia ako teplotný priemer okolia. Je to za- príčinene hlavne tepelnou zotvačnosťou masívnych stavebných materiálov, veľkými plochami zariadení pre statickú dopravu, nedostatkom zeleny a spomalením prúde vodch kvôli štruktúre budov.

Budovy a prostredie sa bude musieť postupne prispôsobovať zvyšujúcim sa teplotám. Doteraz užívaná klimatizácia nie je pre prehrievajúce domy ideálnym riešením. Pri ňom totiž dochádza k výraznej spotrebe energie, k emisi a skleníkových plynoch a teda v dlhodobom čase príjmu skvrňa v komín. Značnú časť tohto energického je už aj ziného zdroja ako plyn, ktorý je dostupný v historických centrách a rovnako aj z iného dôvodu nevyhovujúci architektonický koncept.

Preto je omnoho hospodárnejšie budovu chrániť proti prehrievaniu pasívnych spôsobmi a predošľať tak potenciálnemu potrebečťu. Veľkým prínosom pre zabezpečenie optimálnej klímy v interiéri je vonkajšie tienenie, ktoré užívateľom zabezpečuje minimálniu tepelnú zotravosť. Je pečateľstvom časť klimatických astrom, ktoré zariadenia, ktoré sú rozložené na váčších plochách, môžu slúžiť ako výnimkový miestne formy teplného. Výrazne absorbujú teplo námieš timavé asfaltové plochy, ktorých podložie je zabezpečené tepelnou izoláciou, ktorá zabraňuje odstrešovaniu udržateľného klíme v interiéri.

Tepelná izolácia stavby, ktorá zabráni prehrievaniu teplovodných vodách a atmosféry, je základom vizualizácie budov na dobrej vzdialenej. Prehrievanie obcasov je využíváno ako prírastok tepla a hromadne forme tepla. Základom udržateľnosti budov je udržateľné slúženie prírastok tepla a energetických nákladov. V rámci jej realizácie je využívať minimálnu tepelnú zotravosť a hromadne forme teplovody.

**Zmienenie podmienok**

Zmienenie podmienok sa realizuje v rámci operatívnych programov EÚ a prehrievanie prípady je využívané v rámci projektov. Tento projekt je realizovaný v rámci operatívneho programu CENTRAL EUROPE a spolufinancovaný Európskym fondom pre regionálny rozvoj.
sú pred aktívnymi systémami preferované integrované riešenia a pasívne princípy. Na význame nadobúda aj riadenie výstavby a kontrola jej kvality.

Pri vytváraní vystavaného prostredia popri snahách o čo najváčší výhodami sú počas celého životného cyklu budovy. Tvorba návrhu je vnímaná ako proces, ktorý sa rieši opakujúcimi sa kreatívnymi - kritickými - analytickými prístupmi k riešeniu. Cieľom multidisciplinárneho timu je vyvinúť taký návrh budovy, ktorý splni požiadavky na dlhodobú udržateľnosť stavby. Doterajšie procesy navrhovania sú viac lineárne. Pri IED je proces cyklický a preto pracujú rôzne profesie už v počiatke fáze na návrhu spoločne v integrovaných návrhových tínoch. IED môže byť posudzovaný ako systém riadenia kvality, ktorý podporuje rozvojovací proces s ohľadom na ciele projektu. /Šimkovičová 2013/

Koncept IED sa týka tiež technických riešení budov, ktoré sú prednostne integrované do tvaru a štruktúry, najmä v prvom rade na dosiahnutie vysokej energie a nedotknuteľnosti napríklad Európskym fondom pre regionálny rozvoj.

3.2.1 Integrované projektovanie

Integrované environmentálne navrhovanie (IED) je spôsob navrhovania stavieb, pri ktorom návrhový tím pristupuje k procesu tvorby budovy s ohľadom na environmentálne požiadavky počas celého životného cyklu budovy. Tvorba návrhu je vnímaná ako proces, ktorý sa rieši opakujúcimi sa kreatívnymi - kritickými - analytickými prístupmi k riešeniu. Cieľom multidisciplinárneho timu je vyvinúť taký návrh budovy, ktorý splní požiadavky na dlhodobú udržateľnosť stavby. Doterajšie procesy navrhovania sú viac lineárne. Pri IED je proces cyklický a preto pracujú rôzne profesie už v počiatke fáze na návrhu spoločne v integrovaných návrhových tínoch. IED môže byť posudzovaný ako systém riadenia kvality, ktorý podporuje rozvojovací proces s ohľadom na ciele projektu. /Šimkovičová 2013/

Koncept IED sa týka tiež technických riešení budov, ktoré sú prednostne integrované do tvaru a štruktúry, najmä v prvom rade na dosiahnutie vysokej energie a nedotknuteľnosti napríklad Európskym fondom pre regionálny rozvoj.

IED je založený na spolupráci medzi zúčastnenými stranami (klient, architekt a ostatní špecialisti a konzultanti, realizátor až užívatelia) od počiatku procesu návrhu až po realizáciu s cieľom dosiahnuť vysoké energeticke, ekonomické a environmentálne ambície. Pri dosahovaní týchto ambícií sú uprednostňované integrované riešenia a pasívne princípy, pred aktívnymi systémami.
Výstavba riadená podľa pravidel udržiavateľného rozvoja definuje iné tri hlavné oblasti:

- Kvalitu životného prostredia;
- Ekonomickou efektivitu a obmedzenia;
- Sociálne a kultúrne súvislosti.

Na to, aby bolo možné tieto tri oblasti vedúce k udržiavateľnosti uviest’ do praxe, je potrebné vytvoriť systém kontrol umožňujúci počas jednotlivých fáz výstavby posudzovať navrhované riešenie. Kontroly sú robené počas celého životného cyklu budovy. V prvom rade tu ide o:

- Proces overenia projektu v pripravnej fáze;
- Nástroje pre odhalovanie chyb počas realizácie;
- Meranie a vyhodnocovanie počas užívania.

Prvým krokom je priprava projektu a kontrola jeho kvality, na hotovú schválenú projektovú dokumentáciu nadávázuje realizačná časť. Výber zhotoviteľa je na stavebníkov. Pokiaľ je stavba investovaná zo súkromného sektora, je výber dodávateľskej firmy na pravidlách obchodnej súťaže, ktoré si investor stanovuje sám. U stavebných záväzkov financovaných z verejných zdrojov je výber dodávateľa presne definovaný podľa pravidel verejného obstarávania. Tu je potrebné definovať prípadné požiadavky na nadstandardné environmentálne nároky (napr. rámec platných vyhlášiek a zákonov). Jedná sa o certifikáty kvality, prípadne iné označenia environmentálnej výstavby.

Dozor na stavbe

Stavebný dozor, technický dozor, autorský dozor projektanta a ďalšie kontrolné orgány vo výstavbe riší Stavebný zákon (Návrh... 2014). Pre nás je podstatné, že úlohou stavebného dozoru je aj kontrola kvality realizovaných prác. Pri zhotovovaní udržiavateľných a energeticky efektívnych stavieb je dôležité, aby stavebný dozor poznal ich špecifíky, aby vedel, kde je vhodné uprednostniť stavebný dozor so skúsenosťami z tohto výstavby či aspoň s absolvovanými školními a kurzami. V každom prípade je vhodné prebrať si špecifickú stavbu na stretnutí všetkých zainteresovaných: investora, projektanta, realizátora i dozoru.

Test vzduchovej priepustnosti

Špecifické miesto má pri kontrole kvality realizovaného diela test vzduchovej priepustnosti („blower-door test“, BDT). Nastúpom výstavby pasivných domov sa stáva čoraz častejším nástrojom na overenie kvality.

Vzduchovou priepustnosť rozumieeme schopnosť stavebných konštrukcií prepúšťať vzduch. Netesnosťi nájdené v zdi alebo stavebných konštrukciách sú výsledkom nedokoncaťa a nedokonalosti projektu. Dozor na stavbe, ktorý sa zúčastní práve na týchto testoch, by mohol postúpiť ako správne aj s vyšším poznatkom o tom, ako sa stavba nachádza, a ako treba ju ďalej postraťať. Výsledky testu sa môžu taktiež použiť pri vyberaní dodávateľa alebo pri kontrole kvality práce.


Požadovaná celková neprievisťaťa obály budovy (prípadne jej časti) je daná normou STN EN 832. Vychádza z celkové integrintu výmeny vzduchu za 1 hodinu pri tlakovom rozdielne 50 Pa. Tato intenzita výmeny vzduchu je označovaná ako \( n_{50} \). Normové hodnoty \( n_{50} \) sú rôzne v závislosti na spôsobu vetrania.
### Termovízne snímkovanie

Ďalší spôsob detekcie slabých miest v konštrukcií počas realizácie a po ukončení stavby je termovízne snímkovanie. Snímanie povrchovej teploty odhalí nedokonalosti riešenia detailov, zvyšené tepelné uníky v konštrukcii, tepelné mosty, riziko vzniku plesenia či netesnosti.

#### Systém riadenia kvality


#### 3.2.3 Budova počas svojho životného cyklu

Životným cyklom budovy nazývame súhrn všetkých etáp jej existencie – podobne ako pri štúdiu života organizmu sa zaobieráme zrodom, vývojom, aktivným „životom“ a zánikom budovy. Posúdenie životného cyklu (Life-Cycle Assessment – LCA) budovy je komplexná analýza vplyvov stavby od získania surovín a energetických zdrojov z prostredia až po likvidáciu odpadu po zániku budovy, teda „od kolísky po hrob.“

Vplyvy budovy posudzujeme čo najkomplexnejšie, ťažisko z environmentálneho hľadiska, no niekedy sa sústreďujeme na vybrané hľadiska, napríklad CO2 bilanciu alebo energetickú bilanciu od „zabudovanej“ energie cez súhrn prevádzkovej spotreby počas všetkých rokov existencie stavby až po potrebu energetického zdroja na likvidáciu či recykláciu objektu na konci jeho existencie. Z posúdenia LCA by mali vychádzať všetky schémy hodnotenia udržateľnosti budov a urbanistických súborov.

Vo všeobecnosti životný cyklus delíme do štyroch fáz (či do troch, ak prvé dve spojíme):

- **Získavanie surovín**

Úplný životný cyklus produktu začína získaváním obnoviteľných i neobnoviteľných surovín a energetických zdrojov z prostredia. Jedná sa napríklad o získanie drevnej alebo ropy či o doloženie rúd. Do tohto štádia je zahrnutá aj doprava surovín a materiálov po získaní okamihu ich konca životnosti a likvidácia objektu na konci jeho existencie.

- **Výroba**

V štádiu výroby sú suroviny premiešané na produkt a dopravované ku spotrebiteľovi. Samotné štádium výroby sa skladá z zmeny surovín na materiály potrebné na výrobu produkta, z výroby a kompletizácie vlastného produktu. Pri bežných priemyselných produktoch pri-
búda k tomu balenie, ktoré je nutné pre distribúciu k spotrebiteľovi – v prípade budov túto fázu zavŕšuje samotná výstavba objektu.

Užívanie produktu

Vyrobencový produkt je v tomto štádiu spotrebovávaný a využívaný. Sú sem zahrnuté energetické a surovinové požiadavky na prevádzku, využitie, opravy či uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Odstránenie

Keď spotrebiel už produkt nepoužíva, pride na rad štádium odstránenia. Tu berieme v úvahu energetické a materiálové nároky na prevádzku, využitie, opravy i uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Užívanie produktu

Vyrobencový produkt je v tomto štádiu spotrebovávaný a využívaný. Sú sem zahrnuté energetické a surovinové požiadavky na prevádzku, využitie, opravy či uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Odstránenie

Keď spotrebiel už produkt nepoužíva, pride na rad štádium odstránenia. Tu berieme v úvahu energetické a materiálové nároky na prevádzku, využitie, opravy i uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Užívanie produktu

Vyrobencový produkt je v tomto štádiu spotrebovávaný a využívaný. Sú sem zahrnuté energetické a surovinové požiadavky na prevádzku, využitie, opravy či uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Odstránenie

Keď spotrebiel už produkt nepoužíva, pride na rad štádium odstránenia. Tu berieme v úvahu energetické a materiálové nároky na prevádzku, využitie, opravy i uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Užívanie produktu

Vyrobencový produkt je v tomto štádiu spotrebovávaný a využívaný. Sú sem zahrnuté energetické a surovinové požiadavky na prevádzku, využitie, opravy či uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Odstránenie

Keď spotrebiel už produkt nepoužíva, pride na rad štádium odstránenia. Tu berieme v úvahu energetické a materiálové nároky na prevádzku, využitie, opravy i uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Užívanie produktu

Vyrobencový produkt je v tomto štádiu spotrebovávaný a využívaný. Sú sem zahrnuté energetické a surovinové požiadavky na prevádzku, využitie, opravy či uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Odstránenie

Keď spotrebiel už produkt nepoužíva, pride na rad štádium odstránenia. Tu berieme v úvahu energetické a materiálové nároky na prevádzku, využitie, opravy i uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Užívanie produktu

Vyrobencový produkt je v tomto štádiu spotrebovávaný a využívaný. Sú sem zahrnuté energetické a surovinové požiadavky na prevádzku, využitie, opravy či uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Odstránenie

Keď spotrebiel už produkt nepoužíva, pride na rad štádium odstránenia. Tu berieme v úvahu energetické a materiálové nároky na prevádzku, využitie, opravy i uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Užívanie produktu

Vyrobencový produkt je v tomto štádiu spotrebovávaný a využívaný. Sú sem zahrnuté energetické a surovinové požiadavky na prevádzku, využitie, opravy či uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Odstránenie

Keď spotrebiel už produkt nepoužíva, pride na rad štádium odstránenia. Tu berieme v úvahu energetické a materiálové nároky na prevádzku, využitie, opravy i uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Užívanie produktu

Vyrobencový produkt je v tomto štádiu spotrebovávaný a využívaný. Sú sem zahrnuté energetické a surovinové požiadavky na prevádzku, využitie, opravy či uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Odstránenie

Keď spotrebiel už produkt nepoužíva, pride na rad štádium odstránenia. Tu berieme v úvahu energetické a materiálové nároky na prevádzku, využitie, opravy i uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Užívanie produktu

Vyrobencový produkt je v tomto štádiu spotrebovávaný a využívaný. Sú sem zahrnuté energetické a surovinové požiadavky na prevádzku, využitie, opravy či uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.

Odstránenie

Keď spotrebiel už produkt nepoužíva, pride na rad štádium odstránenia. Tu berieme v úvahu energetické a materiálové nároky na prevádzku, využitie, opravy i uskladnenie. Pri budovách sú to prevádzkové nároky (v prvom rade energetické) a investície do údržby stavby.
a takmer nulových budov začína byť čoraz aktuálnejšia. V týchto budovách pokrývajú pasíve zisky energie zo slnečného žiarenia až 30% potreby tepla na vykurovanie.

Popri požiadavke teplotného komfortu v zime (min. 20°C) sa zoobíra ale aj požiadavka na leteť tepelný komfort (max. 26°C). Pri vyšších teplotách sa říšský organismus začína ochladzovať potením, čo zváčí vnímame ako diskomfort. Od 29°C začína výrazne klesať naša schopnosť sústredenia a podania pracovného výkonu.

Koncept budovy závisí od schopnosti architekta prispôsobiť architektonický návrh špecifikač káms prostredia. Pri jeho ignorovaní môže energetická náročnosť budovy rádovo narastať.

3.3.2 Konštrukcie, tepelné mosty, neprievzdušnosť

Najviac tepla z budovy uniká tepelnoizolačnou obálkou budovy. Teda steny a okná sa v najväčšej miere podliehajú na tepelných stratách. Z tohto dôvodu sme svedkami stáleho sprísňovania požiadaviek na tepelný odpor konštrukcie.


Okná zaistujú vizuálny kontakt s exteriérom, prorúdené osvetlenie a často aj vetranie. Hrúbka zasklenia je radovo menšia ako hrúbka steny a ich isolačné schopnosti vďaka hlavne vzduchu uzatvorenému vo svojej štruktúre. Izolanty poznáme na báze syntetických a prírodných materiálov. Každý typ má svoje výhody a nevýhody. Ich tepelná vodivosť je 0,04 W/mK. Najnovšie materiály dosahujú hodnoty tepelnjej vodivosti okolo 0,032 W/mK a sú známe aj materiály, ako vákuová tepelná izolácia, ktorá dosahuje ešte výrazne lepšie hodnoty. Postupným vývojom sme budeme svedkami zmenšovania hrúbky izolačnej rovniny pri zlepšovaní jej parametrov. /Krajcsovics 2013/

Izolačný obal budovy, výplne otvorov

Tepelnoizolačné materiály sú charakteristické svojou nízkou hustotou a hmotnosťou. Za svoje izolačné schopnosti vdáca hlavne vzduchu uzatvorenému vo svojej štruktúre. Izolanty poznáme na báze syntetických a prírodných materiálov. Každý typ má svoje výhody a nevýhody. Ich tepelná vodivosť je 0,04 W/mK. Najnovšie materiály dosahujú hodnoty tepelnjej vodivosti okolo 0,032 W/mK a sú známe aj materiály, ako vákuová tepelná izolácia, ktorá dosahuje ešte výrazne lepšie hodnoty. Postupným vývojom sme budeme svedkami zmenšovania hrúbky izolačnej rovniny pri zlepšovaní jej parametrov. /Krajcsovics 2013/

Realizácia detailov je klúčová pre dlhú životnosť stavby a hospodárnu prevádzku. Pravé v miestach stykov rôznych konštrukcií vzniká viacrozemné vedenie tepla nazývané tiež tepelný most. Tepelné mosty sú budúc konštrukčné, ako napríklad prerusenie tepelnoizolačnej obálky, alebo geometrické, miesta, kde vplyvom zmeny geometrie stavby dochádza k zmene tepelného toku, napríklad rohy budov.

V týchto miestach dochádza v niektorých prípadoch k tvorbe plesní a k hlučnému pneumatizmu. Prvé v miestach stykov rôznych konštrukcií vzniká viacrozemné vedenie tepla nazývané tiež tepelný most. Tepelné mosty sú takmer nulových a pasívnych domoch majú čoraz väčšie podieľ na celkových tepelných stratách a preto projektovanie bez tepelných mostov je klúčové pre takýto typ výstavby.

Pro obmedzenie vzniku kondenzácie a tepelných strát vetraním je potrebné po vnútornom obvode stavby riešiť vzduchozlučový otvor. Tá zabraňuje infiltrácií, teda nekontrolovaným únikom tepla a súčasne prievanu.
Vzduchová priepustnosť obálky budovy (Blower-door-test BDT)


3.4 Obnoviteľné zdroje energie

Veľkú včasú energie potrebnej na prevádzku budov získavame dnes z neobnoviteľných zdrojov: spoľaním fosílnej palivy (s bojom o ich zdroje a s emisiom CO₂, SOx, NOx) či z rízikovej prevádzky jadrových elektrární. Ak chceme dosiahnuť udržateľné fungovanie našej civilizácie, musíme zvyšovať dôjazdový prúd. Za paritou získavania obnoviteľných zdrojov energie, ktoré nazývame aj alternatívnymi zdrojmi vzhľadom k cieľu nahradit nimi „klasické“ získavanie energie (a tiež vzhľadom k ich doteraz malému podielu na našej energetike). Niekteré z týchto zdrojov sa stavajú súčasťou „veľkej“ energetiky (vodné, veterné, geotermálne a veľké solárne elektrárne, centrálné zdroje tepla či kogeneračné systémy so spoľaním biomasy), iné môžeme využívať v bezprostrednej súvislosti s prevádzkou budov a niekedy aj s vplyvom na ich architektonické riešenie a estetický výraz. Po roku 2020 (či pri verejných budovách po roku 2018) sa budú môcť stavať len takmer nulové budovy využívajúce obnoviteľné zdroje energie priamo v nich, na nich či v ich blízkosti. Popri pasívnom využívaní solárnej energie a vnútorných získov tepla budove pôjde v prvom rade asi o aktívne solárne konštrukcie – či už o termické systémy na ohrev vody, alebo o fotovoltaické panely na výrobu elektriny. Získanie energie z prostredia pomocou tepelných čerpadel je vcelku bežné už dnes, na pokrytie potreby tepla (či chladu) je toto dobrá voľba. Spoľana biomasy (drevo, štiepka, pelety, olej či tieh) je ďalšou možnosťou, ako získavať energiu z obnoviteľného zdroja. Integrácia tejto techniky s architektonickým riešením staveb na mnohých lúch a verejných budovách po roku 2018 sa realizuje už otermické systémy a elektroenergetika „architektúry 2020“. Niekoľko jadrodnešných odporúčaní pri voľba zdroja energie, vždy by sme mali vychádzať z konkrétnejho potreby a miestnych podmienok, posudzujúc alternatívy v dlhodobom časovom horizonte.

3.4.1 Slnečná energia

Zo Slnečného pôdaja pochádza takmer všetka energia, ktorú využívame. Biomasa vznikáťa fotosyntézou a jej premenou vznikli zásoby fosílných palív, motorem kolobehu vody či pružením vzduchu 1 je tiež teplo Slnečného energie využívame v našich budove na pasívny ohrev interiéru či „aktivne“ v soľarných kolektoroch.

Termické soľarné kolektory využívajú tepelnú energie nesenú slnečními lúčmi – zachytávajú jú tmavým povrchom, odovzadávajú jú vzhľadu alebo kvalitnému mádu (voda, nemrzňúca zmes) a využívajú ju v vodičoch alebo ju uložia v zásobníku tepla na neskoršie využitie. Fotovoltaické kolekty premieňajú energiu slnečných lúčov na jednosmerný elektrický prúd a ten (po prípadnej prevádzke na striedavý prúd a zmene napätia) využívajú v elektrickom porúčnikách či odovzdušajú do siete, alebo ho ukladajú do akumulátorov pre neskoršie použitie. Soľárne kolektory môžu byť integrované súčasťou architektonického konceptu, môžu byť za-
členené priamo do konštrukcie stien, strechy či okien – často sa však uplatňujú mimoarchitektonicky, ako aditívna súčasť stavby či ako solitérne zariadenie mimo budov. Mimoarchitektonickou záležitosťou sú spravili aj rôzne typy veľkých fotovoltaických či fototermických elektrární. /Pifko 2013/

3.4.2 **Energia vody a vetra**

Polohová a pohybová energia vody či pohybová energia vetra sú obnoviteľné zdroje, ktoré používame už po stáročia. Túto energiu dnes turbinami rôznych typov a generátormi premieňame na elektrický prúd. Vodné elektrárne sú etablovanou súčastou „veľkej“ energetiky, zaujímavé je však aj využitie malých tokov mikroelektrárňami, ktoré by mohli byť integrované do architektúry bežných budov – vysrodená elektrárna môže slúžiť pre autonómne domy či súbyt alebo môže byť, podobne ako pri fotovoltaických systémoch, dodávaná do elektrickej siete. Veterné elektrárne nahradili mechanické využitie energie vetra veternými mlynami, ktoré sa však vždy používajú už po stáročia. /Pifko 2013/

3.4.3 **Energia biomasy**

Spaľovanie paliva je tradičným a stále najbežnejším (i najlacnejším) spôsobom získavania tepla, či už v otvorenom ohnisku kozuba, v kotli ohrevajúcom vode pre kúrenie či v centrálnom zdroji tepla mimo vykurovaného objektu. Spravidla spaľujeme fosílné palívá (plyn, využitie oheňov do autonómnych systémov v kombinácii s akumuláciou získanej energie alebo ich zapájame do elektrickej siete. Veterné elektrárne teda využívame v autonómnych systémoch v kombinácii s akumuláciou získanej energie alebo ich zapájame do elektrickej siete, ktorá sa však môže byť aj výkonnejšie či než výkonná „našej“ elektrárne. /Pifko 2013/
3.4.4 Energia prostredia


Teplo pre tepelné čerpadlo môžeme odobierať zo zeme prostredníctvom výmeníka s nemrzňúcou zmesou, ktorý má dĺžku desiatok až stoviek metrov – ten môže byť umiestnený v zemnom zásobníku alebo na teplovodovej sieti nebo pod povrchom hlbokou neskoršie asi do desiatok metrov. Pre odber tepla podzemnej vody využívame dve studne, z jednej vody odoberame a do druhej ju miernie ochladzujeme. Jednoduchšie (ale nie vždy dostupné) je odoberanie tepla z povrchových vôd – a najjednoduchšie získať teplo prostredia z vonkajšieho vzduchu. Tepelným čerpadlom získané teplo využívame na ochranný efekt členov, pre ohrev vody v akumulačných zásobníkoch alebo na teplovodovej sieti. Podľa toho, odkiaľ a kam teplo „čerpame“, označujeme tepelné čerpadlá napríklad „zemvoda“ alebo „vzduch-vzduch“. V takzvaných kompaktných jednotkách je tepelné čerpadlo v jednom konštrukčnom celku s akumulačnou nádržou a s vetradou jednotkou s rekuperačnou teplou – všetku techniku pre prevádzku malého domu môžeme sústrediť v interiéri, na ohrev vody v akumulačnom zásobníku alebo na teplovodovej sieti.

Kogenerácia

Kogenerácia je spoločná výroba elektriny a tepla. Spaľovanie fosílných palív či biomasy spravíte a výdaje to príjmy na zabezpečenie tepla pre prevádzku budov. Ak potrebujeme elektrickú energiu, spaľovaním paliva môžeme v motore či turbíne získať mechanickú energiu, ktorú potom môžeme v generátore na elektrinu. Účinnosť tohto procesu je pomene nízka a zostáva nam množstvo „odpadového tepla“ unikajúceho do okolitého prostredia. Ak ho zachytíme a využijeme získame napríklad „zemvodu“ alebo „vzduch-vzduch“. V takzvaných kompaktných jednotkách je tepelné čerpadlo v jednom konštrukčnom celku s akumulačnou nádržou a s vetradou jednotkou s rekuperačnou teplou – všetku techniku pre prevádzku malého domu môžeme sústrediť v interiéri na vykurovanie, výrazne zvýšime celkovú účinnosť systému – to je zmyslom kogenerácie. Stretneme sa s ňou v mierkach veľkých energetických zariadení (začínajúcich s prenájmovou elektrínou a výrobnou jednotkou, ktoré často na miesto fakultného podajania využívajú bionaftu, lieh alebo bioplyn. /Pífko 2013/

3.5 Menežment vody

3.5.1 Využitie dažďovej vody

Následkom klimatických zmien dochádza aj v našich mestách výraznejšiemu prehrievaniu a váčšej koncentrácií bůrok a prívalových dažďov. (zdroj SHMU) Tie predstavujú problém pre kanalizačný systém, čišťiaci odpadových vôd, vodné toky a nimi dotknuté územia - záplavy. Hlavné v súlade je veľké množstvo nepriepustných plôch, z ktorých sa voda veľmi rýchlo dostáva do kanalizácie a zvyšuje riziko povodní.


Z tohto dôvodu má význam sa zamýšlať na návrhu nad oddelením splaškovej vody a takzvané „sivej“ dažďovej vody. Tú je možné využívať aj v domácnosti na pranie, či splachovanie záhrad, ako aj polievanie záhrady.


Z tohto dôvodu má význam sa zamýšlať na návrhu nad oddelením splaškovej vody a takzvané „sivej“ dažďovej vody. Tú je možné využívať aj v domácnosti na pranie, či splachovanie záhrad, ako aj polievanie záhrady.

Ento projekt je realizovaný v rámci operačného programu CENTRAL EUROPE a spolufinancovaný Európskym fondom pre regionálny rozvoj.
3.5.3 Oddelené zásobovanie pitnou a úžitkouvou vodou


3.6 Zlepšovanie kvality vnútorného prostredia

Súčasné štúdie ukazujú, že náklady pre spoločnosť, zamestnávateľov a vlastníkov budovy spojené s nekvalitným vnútorným prostredím sú často vyššie než náklady na energiu spotrebovanú v tejto budove. Bolo dokázané, že dobrá kvalita vnútorného prostredia môže zvýšiť celkovú pracovnú a vzdelávaciu výkonnosť a redukovať absencie. K udržateľnej výstavbe preto partri aj snaha o zabezpečenie kvality vnútorného prostredia. Kvalitou vnútorného prostredia v budovách sa zaoberajú normy EN ISO 7730 a STN EN 15251. Tie definujú parametre kvality vnútorného prostredia v kritériách tepelného stavu prostredia v zime a v lete, vetrania, kvality vzduchu, vlhkosti, osvetlenia a akustiky.

3.6.1 Materiály a kvalita vnútorného prostredia


3.6.2 Tepelná, akustická a svetelná pohoda, výmena vzduchu

Normami požadované parametre prostredia sme stručne spomenuli vyššie, tu sa k nim vrátime. Pre pohodnejšiu zrozumiteľnosť textu si dovolíme si použiť vžité termíny (napríklad „tepelná pohoda“ namiesto „kritérium tepelného stavu prostredia“)

Tepelná pohoda v zime


Ďalšou výsledkou je takáto prekvapenie tepelného prostredia, ktoré sa môže zjavovať aj v interiéri stredy budov, ktoré sa na tepelnú pohodu môže mať vplyv na pohodlivosť človeka v interiéri. Ďalším faktorom, ktorým sa na tepelnú pohodu môže mať vplyv na pohodlivosť človeka v interiéri, je rozlozenie teplot nad plochou sníma sa podľa ktorého je pomera tiež závislosť pokročilosťi a tepelného človeka v interiéri, ktoré sa zandia najväčšie tepelnej, alebo chladnejších človek a ich pohodlivosť sa zväčši.
**Tepelná pohoda v lete**

Ľudské telo má vnútornú teplotu 37°C, pri ktoré prebiehajú metabolické reakcie v búnkách v optimálnom režime. Povrchová teplota je o niečo nižšia okolo 35°C a tu sa deje aj prirodzené odvzdušňovanie tepla sálaním a prestupom do okolitého prostredia. Ak sme obľúčení, je toto odvzdušňovanie menšie podľa miery zahalenia. Ak je okolité prostredie teplejšie ako 26°C pribúda k týmto spôsobom chladienia aj potenie a od teploty 29°C sa deje už významne len týmto spôsobom. Od tejto teploty začína aj rapidne klesať naša schopnosť koncentrácie, myslenia a schopnosti pracovať.

V budovách môžeme predchádzať letnému prehrievaniu pasívnym spôsobom: zateplením budovy, tienením, nočným vetraním – chladením priestorov s dostatočnou akumulačnou hmotou, nízke vnútorné zisky- efektívne domáce spotrebiče. Pri veľkej váčšine budov vieme zabezpečiť optimálne vnútorné podmienky takýmto prostriedkami.

Ak to už nie je možné nastupuje klimatizované vetranie alebo chladienie, na ktoré sú ale niektorí ludia citliví. Preto sa hlavne v administratívnych budovách začínajú presadzovať nízkooteplné chladiace systémy využívajúce masívne a konštrukcie stropov na chladienie priestorov.

Letný teplotný komfort sa váčšinou udáva výpočtom percentuálnej doby z roku, kedy je v interiéri teplota vyššia ako 26°C. Ak je táto hodnota pod 5% hovoríme o vysoko komfortnom prostredí. Hranicná hodnota je 10%. Pri jej prekročení by sme mali použiť pasívne alebo aktívne prostriedky na dosiahnutie tepelnej pohody.

**Kvalita vzduchu a potreba vetrania**

Kvalita vzduchu sa vyjadruje prostredníctvom potrebné úrovne vetrania alebo pomocou koncentrácie CO₂ / STN EN 15251/. Ovplyvňujú ju emisie z užívatelia priestoru a ich aktívy, z budov a ich zariadenia a zo zariadení techniky prostredia. Požadovaná výmena vzduchu je založená na zdravotných kritériách a kritériách komfortu.

Ako každý iný živý tvor aj my potrebujeme pre naše fungovanie optimálnu teplom a vzduchom, ktorý je prijímateľný a zdravý. V miestnosti vyvíjame v tepelnom a vodnom období rôzne fázy tepelného komfortu.


Letný teplotný komfort sa váčšinou udáva výpočtom percentuálnej doby z roku, kedy je v interiéri teplota vyššia ako 26°C. Ak je táto hodnota pod 5% hovoríme o vysoko komfortnom prostredí. Hranicná hodnota je 10%. Pri jej prekročení by sme mali použiť pasívne alebo aktívne prostriedky na dosiahnutie tepelnej pohody.

**Vlhkost' vzduchu**

Absolútna vlhkost' vzduchu je množstvo vodnej pary (v gramoch) v 1 m³ vzduchu, relativná vlhkost' je absolútna vlhkost' v pomere k vlhkosti nasýtených vodných pár pri danej teploty. Schopnosť vzduchu zviazať v sebe molekuly vodnej pary sa mení v závislosti od teploty – studený vzduch má týto schopnosť vyrazne nižšiu ako vzduch teplý.

Ideálna vlhkost' v interiéri je zhruba 40-60%, pod 30% je pre človeka nepríjemný suchý vzduch, nad 70% sú ohrozené stavebné konštrukcie. V lete nie je problém udržať vlhkost' v tomto rozmedzí, v zime pri intenzívnom prevetrávaní hrozí jej pokles: absolútna vlhkost' vonkajšieho vzduchu je nízka, aj keď relatívna sa blíži 100%. Pri vetraní sa tento studený vzduch s nízkou absolútnou vlhkost' dostáva do interiéru a ohriatím jeho relatívna vlhkost'
klesne. Tento proces nastane nielen pri vetraní, ale aj pri infiltrácii netesnosťami, a môže viest’ k prílišnému vysušaniu interiéru počas zimy. To sie nepredstavuje žiadané priamy zdravotný problém, ale vedie k vysušaniu očí a slizníc dýchacích ciest a k váchšiemu šíreniu prachových častíc.

Vážnejšie problémy je privysoká relatívna vlhkosť vzduchu. Už pri 80% vznikajú ideálne podmienky pre rast plesní, ktoré predstavujú vážne riziko pre naše zdravie. Tento problém najčastejšie vzniká pri nedostatočnom vetraní v miestach tepelných mostov, kde je povrchová teplota nižšia ako teploplastová teplota vzduchu. Najčastejšie sú to rohy a kúty miestností, ostenia okien. Tento stav je možné zmeniť častejším vetraním a zvýšením povrchovej teploty prachových častíc.

Osvetlenie a preslnenie


Akustická pohoda


<table>
<thead>
<tr>
<th>dB</th>
<th>Príklady vnímania hluku človekom</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>prah počútečnosti</td>
</tr>
<tr>
<td>20</td>
<td>hlbké ticho, bezvetrie, akustické štúdio</td>
</tr>
<tr>
<td>30</td>
<td>šepot, veľmi tichý byt či veľmi tichá ulica</td>
</tr>
<tr>
<td>40</td>
<td>tlený hovor, šum v byte, tikot budíku</td>
</tr>
<tr>
<td>50</td>
<td>kľud, tichá pracovňa, obracanie stránok novín</td>
</tr>
<tr>
<td>60</td>
<td>bežný hovor</td>
</tr>
<tr>
<td>70</td>
<td>mierny hluk, hlúčna ulica, bežné počúvanie televízie</td>
</tr>
<tr>
<td>80</td>
<td>veľmi silná reproduková hudba, vysávač v blízkosti</td>
</tr>
<tr>
<td>90</td>
<td>silný hluk, idúci vlak</td>
</tr>
<tr>
<td>100</td>
<td>zbljačka, maximálny hluk motor</td>
</tr>
<tr>
<td>110</td>
<td>veľmi silný hluk, živá rocková hudba</td>
</tr>
<tr>
<td>120</td>
<td>štartujúce prúdové lietadlo</td>
</tr>
<tr>
<td>130</td>
<td>prah bolesti</td>
</tr>
<tr>
<td>140</td>
<td>akustická trauma, 10 m od štartujúceho prúdového lietadla</td>
</tr>
</tbody>
</table>
Najvyššie prípustné hladiny hluku v exteriéri určuje vyhláška 549/2007 Z.z.:

<table>
<thead>
<tr>
<th>Kat úz.</th>
<th>Objekty a územia</th>
<th>hluk z dopravy $L_{Aeq}$</th>
<th>iné zdroje $L_{Aeq}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Územie s osobitnou ochranou pred hlukom (veľké kúpeľné a liečebné areály)</td>
<td>deň</td>
<td>noc</td>
</tr>
<tr>
<td>II</td>
<td>Školy a viacpodlažné budovy, rekreačné územia, nemocnice, obytné územia</td>
<td>deň</td>
<td>noc</td>
</tr>
<tr>
<td>III</td>
<td>Okolie letíšok, diaľníck, ciest I. a II. triedy, zberných komunikácií a hlavných železnič. táhov</td>
<td>deň</td>
<td>noc</td>
</tr>
<tr>
<td>IV</td>
<td>Výrobné zóny (areály závodov) a dopravné zóny vyššieho stupňa, bez obytnej funkcie</td>
<td>deň</td>
<td>noc</td>
</tr>
</tbody>
</table>

Prípustné hodnoty určujúcich veličín hluku vo vnútornom prostredí budov:

<table>
<thead>
<tr>
<th>Kat int.</th>
<th>Chránená miestnosť v budovách</th>
<th>Max. hluk (dB)</th>
<th>z vnút. zdrojov $L_{Amax,p}$</th>
<th>z vonk. prostr. $L_{Aeq,p}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Nemocničné izby, ubytovanie pacientov v kúpeľoch</td>
<td>35</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>B</td>
<td>Obytné miestnosti, ubytovňe, domovy dôchodcov, škôlky a jasle</td>
<td>40</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>C</td>
<td>Učebne, posluchárne, čítárne, študovne, konferenčné miestnosti, súdne siene</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Miestnosti pre styk s verejnosťou, informačné strediska</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Miestnosti vyžadujúce dorozumievanie rečou, napr. dielne, čakárne, vestibuly</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

/STN 730532, 2000/


3.7 Voľba materiálov z environmentálneho hľadiska

3.7.1 Využitie miestnych materiálov

Celé tísicročia bola stavebná kultúra podmienená výhradne lokálnymi zdrojmi. Pri výstavbe sa uplatňovali iba prírodné materiály z blízkeho okolia, ktoré ludia používali v súlade s miestnou klímy. To im pomáhalo prežiť aj napriek obmedzeným energetickým vstupom. Opustené stavby pôsobením vonkajších vplyvov degradovali a postupne splynuli s okolitou prírodou, často však boli využité ako zdroj materiálu na stavby nové. Z generácie na generáciu odovzdané a vylepšované tradície výstavby ľudských obydel dodnes udivujú dômyslnými riešeniami, ktoré sú zdrojom inšpirácií aj v súčasnosti.

Posledných dvoch storočí priniesli v súvislosti s priemyselnou revolúciou do fungovania ľudskoj spoločnosti také prevažné zmény, že najmä v krajínach západného sveta bolo tradičné staviteľstvo často prakticky úplne zabudnuté. Rýchly rozvoj dopravy, výroba nových stavebných materiálov a najmä dostupnosť (zdanlive) lacnej energie viedli v 20. storočí v oblasti stavebnictva k významným zmenám. Hlavnými záporami prevážujúceho spôsobu výstavby sa
stali vyčerpávanie neobnoviteľných zdrojov surovín a energie, znečistenie emisiami a odpadmi, ale aj nadmerné spotreba a znečištľovanie vody.

V súčasnosti sa v krajinách EÚ na prevádzku budov spotrebuje 40% vyrobené energie, stavebnictvo vyprodukuje okolo 35% emisií CO₂ a tém 25% odpadov, ktoré sa donedávna iba skládali. Ak vzameme do úvahy aj nároky na výrobu, dopravu a inštaláciu stavebných materiálov a komponentov (tzv. zabudovaná energia), sektor stavebnictva „odhryzne“ z koláča energii ešte váčší diel. Z hľadiska udržateľnosti je preto nevyhnutné obmedzenie používania materiálov s nepriaznivým vplyvom na zdravie užívateľov. Zároveň je potrebná minimalizácia dopravných nárokov, zníženie množstva odpadov zo stavebnictva ich recykláciou a znovupoužitím pri výstavbe.

3.7.2 Prírodné a obnoviteľné materiály


Masívne drevo je materiál, ktorý vznikol opracovaním dreva z rastlenského stromu so zacho- vaním jeho nesúrodé charakteristiky. Masívne drevo má iné vlastnosti podľa vlákien (ra-
diálny rez), iné naprieč vlákien (priečný rez) a iné pozdĺž vlákn čnosti a príklady
Národný školiaci materiál SK – projekt CEC5, výstup 4. 1.2

Tento projekt je realizovaný v rámci opera čného programu CENTRAL EUROPE a spolufinancovaný Európskym fondom pre regionálny rozvoj.

Drevo aglomerované vzniklo najprv rozdelením na menšie časti (štiepky, triesky alebo vlákna) a ich znovuspojením pomocou teploty, tlaku alebo lepidiel do doskového materiálu. Výhodou takýchto materiálov je ich menšia vlhkosťná rozdielnosť a redukcia nerovnorodého správania. V porovnaní s masívnym drevom sú lepšie aj v pevnosti v ohybe, tlaku, odolnosti voči vode alebo ohňu.

Patria sem dosky OSB (Oriented Strand Board) – drevoštiepkové dosky s pozdlžnou orientáciou štiepkami, čo spôsobuje zvýšenie pevnosti v ohybe v pozdlžnom smere. Z OSB dosák sa uvoľňuje relativne málo formaldehydu, množstvo závisí na výrobcovi. V moderných drevostavbách plnia pri opláštení na interiérnej strane a po prelepení spojov aj funkciu paróbrzy a vzduchosťnej vrstvy. Nie všetci výrobcovia ich dodávajú dostatočne kvalitné z hľadiska neprievzdušnosti.

Drevotrieskové dosky (DTD) sa používajú pri výrobe nábytku a pri ich výrobe sa zúžitkuje aj menej kvalitné a odpadové drevo rozdrvené na tri esky. Negatívnym je väčšie množstvo lepidla potrebné na ich spojenie, z ktorých sa uvoľňuje škodlivý formaldehyd a iné prchavé látky.

Relatívne ľahké drevovláknité dosky (DVD) umožňujú difúziu vodnej pary, používajú sa na vonkajšie opláštenie stien a striech ako dodatočná tepelná izolácia.

DHF (Diffusionsoffene Holz-Faserplatte) drevovláknité dosky, ktoré pomocou syntetického lepidiel spájajú drevené vlákna aj s prímesou parafínu. Získavajú tak istú odolnosť proti vlhkosti pri zachovaní paropriepustnosti, čo sa využíva pri vonkajšom opláštení drevestvieb.

K aglomerovaným materiálom priradujeme aj vrstvené kompozitné dosky, cementotrieskové, cementovláknité a sadrovláknité dosky, dosky z drevených štiepok a cementu, ktoré sa u nás predávajú pod názvom Velox a používajú sa ako stratémové debnejne.

Drevo dezintegrované, rozvláknené sa používa ako tepelná izolácia či už fúkaná (fúkané drevené vlákno alebo celulóza) alebo vo forme mäkkých izolačných rohoží, ktoré sú lisované pod minimálnym tlakom s malou objemovou hmotnosťou.

V interiéroch sa uprednostňuje drevo masívne, ošetrené prírodnými nátermi. Drevoštiepkové alebo drevoštiepkové materiály, ako aj syntetické nátermové hmoty môžu predstavovať zdroj nebezpečných emisií (napr. formaldehydu a iných prchavých organických látok), je preto vhodné používať iba tie výrobky, ktorých výrobcovia deklarujú nižšie obsah týchto škodlivín (najlepšie ak to potvrdzuje niektorá z ekoznámiek).

Hlina


Záujem o nepálenú hlinu ožil sa na celom svete v 70. rokoch minulého storočia (v našich krajinách nastal jej nový nástup v stavebnictve aj po r. 2000). Po zisteniach, ktoré odhalili závažné nepriaznivé vplyvy niektorých prímyselných výrobaných stavebných materiálov na zdravie úživateľov (asbestocement, syntetické náterové hmoty, rádioaktivný popol v tvárniciach, formaldehyd v drevoštieksach...), začínali sa brať do úvahy aj hľadiska ekológie a zdravotnej. Z tohto uhlia pohľadu patri nepálená hlina k najzaujímavejším stavebným materiálom súčasnosti. POUŽÍVA BA PREDOVŠETKÝM VO FORME NEPALENÝCH TEHĽÍ A OMIEŤOK, NEJNIEJ AKO HLINA UBJÍJANÁ. Veľkou výhodou sú okrem historickej tradície aj lokálnu využitie a zaújimavé fyzikálne vlastnosti, najmä regulácia vzdušnej vlhkosti. Okrem toho sa íly (napr.
bentonit) vďaka ich prírodnejch schopnosti nabobtnať pri styku s vodou používajú ako tesniacie a hydroizolačné materiály. 

V súčasnosti sa už množstvo výrobkov z nepáleného hliny, určených na stavebné práce, vyhľadáva priemyselné. Sú to predvšeňškým nepálené celulózové vodičky, zlepšené na stavebné práce, sprevádzané priemyselné. Po zmiešaní s vodou aj možné ich aplikovať ručne alebo strojovo. Okrem regulácie vzdušnej vlhkosti poskytujú dobrú akumuláciu kapacity a sú vhodné aj na inštaláciu podmietkového vykurovania.

Zručnosti a príklady

Slama

V stavebníctve sa tieto rastliny používajú predovšetkým vo forme tepelných a zvukových izolačných materiálov. Nevýhodou je horľavosť nechráneného materiálu, ktorú je možné obmedziť správnym zabudovaním do konštrukcie.

**Ovčia vlina**

Produkt chovu oviec, ktorý sa odpradávno využíval a ktorá sa používa v interiéri ako diel a príkyn v prípade, že sa chránia. Pri aplikácii v interiéri dokáže vyrovnať vlhkost, odporúča sa preto aj pri rekonštrukciách histórických objektov a slnečných stavieb.

**Korok**

Jeden cm³ korku obsahuje 30 až 40 miliónov buniek, v ktorých uzavretý plyn podobný vzduchu. Ich steny sú tvorené celulózou, suberínom (prírodný polymér) a voskom, vďaka čomu korok vynikajúco eliminuje tepelnú a zvukovú vodivosť a vibrácie, dobre odoláva vode, ale aj plesniam, drevokaznému hmyzu a hlodavcom. Používa sa na výrobu tepelných a zvukových izolácií s výbornými vlastnosťami, v interiéroch ako obklad alebo podlahová krytina. Korková drvina sa lisuje pri vysokej teplosti bez prídavných látok, iba s vlastnou miazgou.

**Bambus**


### 3.7.3 Recyklované a recyklovateľné materiály

### 3.7.4 Materiály s nízkymi emisiami znečisťujúcich látok


Prvou zmenou boli úsporné opatrenia spôsobené prudkým nárastom cien energii v súvislosti s ropnou krízou. V snahe zabrániť zbytočným únikom tepla sa budovy ušetňovali, čo viedlo k obmedzeniu prirodzeného vetrania oknami a používaniu klimatizácie. Druhou zmenou bolo používanie stále väčšieho počtu chemikálií v budovách. Uplatňovali sa v nových konštrukčných materiáloch, nábytku, textilných produktoch, ale aj v čistiacich a dezinfekčných prostriedkoch. Obe tieto zmeny svojím spolupôsobením viedli k zhoršeniu vnútorného prostredia.

Prejavo sa to zvýšeným počtom ľudí, ktorí sa v takýchto budovách cítili nepríjemne, ba popisovali množstvo zdravotných problémov, ktoré po opustení budovy pominuli. Vzhľadom

Medzi príznaky SBS môžu patrí bolesti hlavy, pálenie sliznic, pálenie očí, zapchatý nos, bolest hrdla, precitlivenosť na pachy, duševná únava, znížená koncentrácia, suchá alebo svrbiaca koža, nevoľnosť, slabosť. Najdôležitejším zistením bolo, že nie je možné určiť jedinú špecifickú príčinu, predpokladá sa, že ide o kombináciu viacerých faktorov (okrem nekvalitného vnútorného prostredia aj príčiny psychosociálne, najmä stres). Následkom SBS býva pokles pracovej výkonnosti a zvýšená práceneschopnosť.

Kvalita vnútorného prostredia je ovplyvňovaná mnohými faktormi. Prvoradá je kvalita vzduchu, kde hrá rolu spôsob a intenzita vetrania, klimatizácia, dôležité je aj osvetlenie, farebné a materiálové riešenie. Kvalita vzduchu vo vnútri budov závisí od:

- kvality vonkajšieho ovzdušia
- objemu vzduchu pripadajúceho na osobu v miestnosti
- výmene vzduchu
- koncentrácie škodlivín a kontaminantov, ktorých zd rojom sú:
  - stavebné materiály, zariadenie interiérov
  - obyvateľov a ich metabolizmus
  - aktivity obyvateľov
  - upratovanie, čistenie a údržba interiéru. /WHO 1995/

**Nedostatočné vetranie**

Syndróm chorých budov vzniká častejšie v budovách, ktorých vnútorné prostredie je celkom oddelené od prostredia vonkajšieho, napr. v budovách, ktoré majú neotváravé okná a kde sa o prísun vzduchu stará väčšie vetracie zariadenie, ktoré zabezpečuje aj úpravu vzduchu - reguluje jeho vlhkosť a teplotu. Pri jeho nesprávnom návrhu alebo dimenzovaní nedochádza k potrebné výmene vzduchu a teda ani odstráneniu škodlivín z vnútorného prostredia. Naviac v spojitosti s nedostatočnou hygienou rozvodov môže dôjsť aj k ich mikrobiologickému znečisteniu.

**Chemická kontaminácia ovzdušia**


Najzávažnejšou skupinou emitovaných látok sú prchavé organické zlúčeniny (volatile organic compounds - VOC) vrátane formaldehydu, nachádzajúce sa napr. v lepidlách, náte- roch, tmeloch, ale aj v nábytku, podlahových krytínach či byтовých textíliách. Do organizmu sa dostávajú predovšetkým väčšinou dišponovaním, niektoré z nich sa môžu absorbovať aj pokožkou. Pri vysokých koncentráciách môžu spôsobiť akútne i chronické problémy, niektoré z nich znamená karcinogény. Akútne reakcie môžu spôsobovať už nízka až stredná úroveň ich koncentrácie.

**Produktový manažment**

Dnes sa v stavebnictve používa niekoľko desiatok tisíc druhov rôznych materiálov a hmôt. Mnohé z nich sú vyrobené z látok, ktorých pôsobenie na ľudský organizmus a životné pro-

---

**Tento projekt je realizovaný v rámci operačného programu CENTRAL EUROPE a spolufinancovaný Európskym fondom pre regionálny rozvoj.**
stredie ešte nie je dostatočne známe a overené. Sortiment súčasných stavebných materiálov je rozsiahly, rozmaitý aj náročný sa v ňom orientovať. Pri výbere stavebného materiálu je preto dôležité nielen, do akej miery splňa rôzne požiadavky (legislatívne, technické, ekonomické...), čoraz väčšie dôraz sa kladie aj na environmentálne parametre. Praktické skúsenosti totiž ukazujú, že obsah znečisťujúcich látok emitovaný stavebnými materiálmi do vnútorného ovdusia môže byť znižený podľa okolností o 50 až 95%. Tento cieľ je dosiahnutelný vďaka uplatneniu produktového manažmentu. Produktový manažment predstavuje starostlivosť výberu a kontroly stavebných materiálov a chemických látok, aby sa zabránilo emisiám škodlivín do vnútorného ovdusia. Tento postup umožňuje:

- vyhnúť sa do značnej miery zdravotne nebezpečným stavebným materiálov a produktom
- zlepšiť ochranu zamestnancov počas výstavby
- zvýšiť kvalitu vnútorného ovdusia vo fáze užívania budovy
- znižiť ďalšiu environmentálne zátiaž pri demontáži a likvidácii stavby.

Skupiny výrobkov, z ktorých sa môžu v interiéri potenciálne uvoľňovať škodlivé látky:

- Drevo a drevené kompozitné materiály
- dosky na báze dreva
- masívne drevo, natierané
- Podlahové krytiny
- elastické podlahoviny
- textilné podlahové krytiny
- Stavebná chémia
- farby na steny
- iné nátory
- lepidlá, najmä na podlahové krytiny
- tesniace materiály a tmely
- ďalšie produkty stavebnej chémie.

Uplatnenie produktového manažmentu je podmienené existenciou pravidelne aktualizovaných databáz, ktoré poskytujú komplexné informácie a kľúčové ukazovatele emisií pre stavebné materiály a interiérové prvky. Na Slovensku žiadna podobná databáza neexistuje, v západnej Európe sa však touto problematikou zaoberajú už dlhší čas. Vedúca krajina v tejto oblasti - Nemecko - má páť medzinárodné uznávaných systémov pre materiály a označovanie výrobkov. Francúzsko, Fínsko, Dánsko, Portugalsko, Rakúsko a Švédsko majú vlastné systémy označovania. Odkazy na niektoré databázy:

EMICODE (Nemecko): www.emicode-produkte.de
Modrý anjel (Nemecko): www.blauer-engel.de/en
M1 (Fínsko): www.rts.fi/list_of_M1_classified_products.htm
Rakúska Eco - Label (Rakúsko): www.umweltzeichen.at/cms/home/produkte.html
Scandinavian Trade standardy (Švédsko): www.golvbranschen.se/vara-medlemmar
v CESBA katalógu uvádzané www.baubook.info/oeg a www.baubook.org
Klima:aktiv Haus www.baubook.at/kahkp (na základe katalógu kritérií OEG).

3.7.5 Predchádzanie emisiám formaldehydu

Najrozšírenejšou prchavou organickou zlučeninou vo vnútornom prostredí je formaldehyd. Formaldehyd je vo vode rozpustný aldehyd s nízkou molekulárnou hmotnosťou. Pri bežných teplotách sa vyskytuje ako bezfarebný plyn s charakteristickým štipavým zápachom a takmer rovnomernou hustotou, ako vzduch. Je bežnou zlučeninou v prírodnom i umelom prostredí a normálnym produkтом metabolismu väčšiny Živých organizmů.

Vyskytuje sa v cigaretnom dáme, automobilových výživových plných, správačich spalovacích procesov liečebného, vzdruženého, plnidiel, lakov a farieb. V budovách sa formaldehyd uvoľňuje z močovinov - formaldehydových zložiť, preglejok a ďalších výrobkov z aglomerovaných materiálov (napr. drevo, plackovou, drevo-
trieskových a OSB dosiek), ale i z farieb a dezinfekčných a čistiacich prostriedkov. Jeho zdrojom je aj čalúnený nábytok, dekoráčné tkaniny, koberce, textil a odevy, najmä s nekríčou úpravou. Formaldehyd sa používa aj ako konzervačný prípravok v niektorých potravinách, v kozmetike, dokonca aj v liekoch. Okrem toho sa bežne používa ako priemyselný fungicidný a dezinfekčný prostriedok a ako konzervačný prostriedok v lekárskych laboratóriách.

Hoci sa plynný formaldehyd bežne vyskytuje v prírode, je pomerne nestály a rýchlo sa rozkladá na slnku alebo pomocou bakteriálneho metabolismu. Vonkajšie ovzdušie je preto zanedbateľným zdrojom formaldehydu. V sídlach sa podľa znečistenia ovzdušia a prítomnosti zdrojov formaldehydu pohybujú jeho priemerné koncentrácie okolo 2-16 µg/m³, čo nie je pre zdravie ľudí významné.

Oveľa väčší problém je prítomnosť formaldehydu v priemyselnom tovare a vo vnútornom ovzduší v budov. V interiéroch sa podľa rozsiahlych meraní v EÚ jeho koncentrácie pohybujú od 6 µg/m³ po hodnoty nad 1000 µg/m³. Menia sa aj v závislosti na teplote a vlhkosti vzduchu, pri vyšších teplotách a pri vyššej relatívnej vlhkosti vzduchu aj počas letných mesiacov sú koncentrácie formaldehydu vyššie. Formaldehyd je pre ľudí visoko toxický pri vdýchnutí, požití aj pri styku s pokožkou. Pri vdychovaní môže vyvoláť podráždenie obi, slizníč, bolesti hlavy, pocit pálenia v hrdle zhoršuje priebeh alergií a astmy. Medzinárodná agentúra pre výskum rakoviny IARC ho na základe výsledkov viacerých štúdií v júni r. 2004 reklasifikovala z potencionálneho karcinogénu (trieda 2A) na humánny karcinogén (trieda 1).

Fyziologické pôsobenie formaldehydu na organizmus /FLD 2014/:  
- Čuchový prah  
  - veľmi citlivé osoby.....60 µg/m³  
  - všeobecne platná medzná hodnota.....150 µg/m³  
  - jasne vnímateľná hranica.....200 µg/m³  
- Dráždivý účinok na ľudí  
  - veľmi citlivé osoby.....od 150 µg/m³  
  - všeobecne.....od 300 µg/m³  
- Dráždivý pocit v pažeráku  
  - veľmi citlivé osoby.....od 150 µg/m³  
  - všeobecne.....od 300 µg/m³  
- Zrýchlené dýchanie  
  - veľmi citlivé osoby.....od 1 000 µg/m³  
  - všeobecne.....od 3 000 µg/m³  
- Zreteľná nevoľnosť, štípanie v nose  
  - veľmi citlivé osoby.....od 2 500 µg/m³  
  - všeobecne.....od 7 500 µg/m³  
- Slzenie obi  
  - veľmi citlivé osoby.....od 5 000 µg/m³  
  - všeobecne.....od 10 000 µg/m³  
- Nebezpečenstvo života  
  - veľmi citlivé osoby.....od 35 000 µg/m³  
  - všeobecne.....od 70 000 µg/m³  

Odporúčanie WHO, že by koncentrácia formaldehydu nemala dlhodobo presahovať 60 µg/m³ (0,6 mg/m³), je z hľadiska jeho výsledku vo vnútornom prostredí realistické a zodpovedá sa súčasným poznatkom o zdravotných účinkoch. Aj u nás je najvyššia prípustná koncentrácia podľa MZ SR 60 µg/m³ pri expozícii trvajúcej 24 hodín a 100 µg/m³ pri krátkodobej expozícii do 30 minút.

Znižovanie emisií formaldehydu a ďalších chemických látok všetkými dostupnými prostriedkami je rozumnou cestou k všeobecnému prospechu. Hlavné opatrenia z hľadiska ochrany zdravia spočívajú v dôslednej kontrole zdrojov formaldehydu - stavebných materiálov, zariadeniakov, nábytku a čistiacich prostriedkov, aby sa podľa možnosti zabránilo používaniu materiálov s vysokou emisiou formaldehydu.

Niekoľko jednoduchých pravidiel pre užívateľov budov, ktoré pomáhajú znížiť koncentráciu formaldehydu vo vnútornom prostredí:
- používať čo najviac prírodných materiálov
- nový textil (podľa možnosti) pred prvým použitím preprať v horúcej vode
- informovať sa pri nákupu o emisnej triede, zložení výrobku, certifikáte výrobku
- vyhýbať sa nápadným lacným výrobkom neznámeho výrobcu
• nevyužívať novovybúdané a rekonštruované priestory hneď po ich dokončení
• nevyškytovať sa podľa možnosti v interiéroch počas maľovania, aplikácie lakov a náterov
• nezariadovať detskú izbu novým nábytkom tesne pred narodením dieťaťa
• využívať šopnosti niektorých izbových rastlín odstraňovať formaldehyd z prostredia
• používať „jemné“ čistiace prostriedky
• pravidelne a intenzívne vetrať.

Z hľadiska produktového manažmentu platia aj pri eliminácii nepriaznivého pôsobenia formaldehydu rovnaké pravidlá, ako pri iných nízkoemisných materiáloch.

3.8 Kategorizácia budov z hľadiska energetickej efektívnosti

Smerovanie k udržateľnosti sa v súčasnosti posudzuje najmä z energetického hľadiska a je to často jediné kritérium, ktoré účastníci stavebného procesu, vrátane projektantov, dokážu meriť a teda aj kontrolovať a splniť. Toto kritérium sa stalo východiskom pre vytvorenie kategórií stavieb podľa ich tepelnotechnických parametrov – podľa energetickej náročnosti počas prevádzky domu. Posúdzované sú nároky na energiu v súvislosti s prevádzkou domu, teda najmä vykurovaním a chladiéním domu, s vetráním, ohrevom teplej užitkovej vody, po-

sudzovaná je tiež spotreba elektrickej energie. Ročná merná potreba tepla na vykurovanie je v rozpätí 50 - 100 kWh/m² a teda aj kontrolovaná. Možnosťí sa vypočítanie výsledkov získanie energie a viera v technologické riešenia, hospodárenie s mernicou 31/2010EU sa už nezdajú spotrebou môžeme hovoriť vádzkovú spotrebu energie) vznikali v sedemdesiatych rokoch minulého storo-

Z hľadiska produktového manažmentu platia aj pri eliminácii nepriaznivého pôsobenia formaldehydu rovnaké pravidlá, ako pri iných nízkoemisných materiáloch.

3.8 Kategorizácia budov z hľadiska energetickej efektívnosti

Smerovanie k udržateľnosti sa v súčasnosti posudzuje najmä z energetického hľadiska a je to často jediné kritérium, ktoré účastníci stavebného procesu, vrátane projektantov, dokážu meriť a teda aj kontrolovať a splniť. Toto kritérium sa stalo východiskom pre vytvorenie kategórií stavieb podľa ich tepelnotechnických parametrov – podľa energetickej náročnosti počas prevádzky domu. Posúdzované sú nároky na energiu v súvislosti s prevádzkou domu, teda najmä vykurovaním a chladiéním domu, s vetráním, ohrevom teplej užitkovej vody, po-

sudzovaná je tiež spotreba elektrickej energie. Ročná merná potreba tepla na vykurovanie je v rozpätí 50 - 100 kWh/m² a teda aj kontrolovaná. Možnosťí sa vypočítanie výsledkov získanie energie a viera v technologické riešenia, hospodárenie s mernicou 31/2010EU sa už nezdajú spotrebou môžeme hovoriť vádzkovú spotrebu energie) vznikali v sedemdesiatych rokoch minulého storo-

Z hľadiska produktového manažmentu platia aj pri eliminácii nepriaznivého pôsobenia formaldehydu rovnaké pravidlá, ako pri iných nízkoemisných materiáloch.
v minulosti bol NED chápaný ako výnimočná (kvalitná, zelená) stavba, kde splnenie či nesplnenie neoficiálneho kritéria nemalo veľký význam, kým dnes je NED povinný štandard: naša norma požaduje realizáciu budov v nízkoenergetickom štárande od 1.1.2013.

Základom koncepcie NED (a každej energeticky efektívnej stavby) je minimalizácia tepelných strát budovy a využívanie energie z prostredia. O energetických stratách rozhoduje aj poloha domu: južné svahy či záveterne lokality úľahľujú energetické úspory, ale toto architekt, ak nie je tvorcom územného plánu, ťažko ovplyvni.

Tvor a orientácia stavby sú zásadné východiská pri nízkoenergetickej koncepcii domu. Kompaktý tvar je predpokladom pre nižšie tepelné straty a orientácia na juh pre vyššie pasívne sínne zisky. Dispozičné riešenie typických NED sleduje teplotné zónovanie pobyto-vých miestnosti na južnej strane a doplnkových miestnosti na strane severnej. Koncepciu NED dotvára vysoká miera tepelné izolácie obvodových stien, strechy a podlahy a použitie izolačných dvojskíel či trojskíel. Na vykurovanie a prípravu teplej pitnej vody sa často využívajú obnoviteľné zdroje energie v kombinácii s nízkoteplotným vykurovacím systémom, čo umožňuje nižšie tepelné straty takýchto homov – výhodou je vysoká účinnosť a životnosť takýchto systémov (hlavne pre nižšie prevádzkové teploty, nižšie straty vykurovacej sústavy a nižšie teplotné namáhanie komponentov).


3.8.2 Ultranízkoenergetický dom

Ultranízkoenergetická budova je budova navrhnutá tak, aby maximálna potreba tepla na vykurovanie ovplyvnená efektívnymi tepelnotechnickými vlastnosťami stavebných konštrukcií nebola vyššia ako polovica potreby tepla na vykurovanie určenej pre nízkoenergetické budo-vy. /STN 730540, 2012/ /Dnes /Vyhlaška 364, 2012/ za ňu obvykle považujeme objekt, ktorého normализovaná požadovaná hodnota mernej potreby tepla na vykurovanie (MPT) je v rozpätí 25 - 50 kWh/m²a a ktorý patri do energetického triedy A1. V minulosti sa za veľmi úsporné NED (či tzv. trojlitrové domy) považovali budovy s potrehou tepla na vykurovanie menšou ako 30 kWh/m²a. Vtedy to však bol „dobrovoľný štandard“ – u nás to bude od 1.1.2016 povinnosť pri (takmer) všetkých novostavbách.

Ultranízkoenergetické domy (alebo „trojlitrové“ domy – podľa MPT vyjadrené v spotrebe vykurovacieho oleja namiesto kWh, a snáď aj kvôli analógií s úspornými autami) majú oproti NED opät aspoň o polovici nižšiu potrebu tepla na vykurovanie, čím sa priblížujú k pasívnym domom a technicky sa od nich príliš nelíšia – najmä pri malých domoch či pri stavbách v nepriaznivých podmienkach môžu predstavovať najefektívnejšie riešenie. Často sú to objekty, ktoré mali ambíciu byť pasívnym domom, ale z rôznych dôvodov (napríklad nevhodná orientácia vynútene urbanistickým kontextom či tienenie okolím) nebolo možné takéto stupen efektívnosti dosiahnuť. Popri dobrej tepelné izolácii je tu spravidla riešenie riadené systémov techniky v dome (vetranie aj vykurovanie) spolu s požiadavkou na väčší výkon vykurovania zvyšujú nutné investície do technického vybavenia. /Krajcsovics, Pifko 2013/

3.8.3 Pasívny dom

Pasívny dom vznikol ako odpoveď na hľadanie objektu, v ktorom by bola zabezpečená tepelná pohoda pasívne bez aktívneho vykurovacieho systému. Takto znie definícia pasívneho domu v anglických podmienkach. Na priblíženie sa tejto potrebe bol objekt super tepelná zaizolovaný (U ≤ 0,1 W/m²K) bez tepelných mostov, s prevádzajúcim zasklenním orientovaným na južnú stranu pre pasívne využívanie sínneho žiaľa, a utesnený pre minimu-
lizáciu tepelných strát infiltráciou. Na zabezpečenie prívodu čerstvého vzduchu je potrebná inštalácia riadeného vetrania s rekuperáciou tepla. Prirodzené vetranie by spôsobovalo veľké tepelné straty a diskomfort počas zimy.

Napriek týmto opatreniam je dosiahnutie optimálnej tepelnej pohody pasívnymi princípmi v našich klimatických podmienkach nerealizovateľné. Čiastočnou odpovedou je dohorev prívádzaného vzduchu do miestnosti. Takýto koncept úspešne funguje v oceánskej klíme európskych krajín. V našich podmienkach je inštalácia dodatočného zdroja tepla získavé nepretravanú. Môžeme očakávať, že s vývojom komponentov s lepšími tepelnoodolnými vlastnosťami a napríklad aj vákuových skiel, sa viac priblížime k tejto méte.

Pasívny dom je budova s veľmi nízkou potrebnou energiou na prevádzku. Pri zabezpečovaní prevádzky a požadovanej tepelnej pohody splňa tieto základné požiadavky: merná potreba tepla na vykurovanie/chladenie (MPT) najviac 15 kWh/m².a (a/alebo merná tepelná strata najviac 10 W/m²), zmeraná vzduchová priepustnosť konštrukcie (Blower-Door Test - BDT) n50 najviac 0,6 h⁻¹, maximálna potreba primárnej energie (MPPE) najviac 40 kWh/m².a (pre vykurovanie, pripravu OPV, vetranie a pomocnou technického zariadenia) a 120 kWh/m².a vŕtané osvetlenie a domácich spotrebičov (podľa Passivhaus Institut Darmstadt).

Hlavné požiadavky na pasívny dom:

- vysoký komfort vnút. prostredia v zime – pokles po vrchovej teploty konštrukcie max 4,2° K
- vysoký komfort vnútorného prostredia v lete – pokles po vrchovej teploty maximálna po
- obnoviteľné zdroje pre výrobu tepla na vykurovanie a ohrev pitnej vody - maximálna po-
- energeticky efektívne domáce spotrebiče - maximálna potreba primárnej energie pre všetky zariadenia (MPPE) najviac 120 kWh/m².a

Pasívny dom by sme svojou koncepciou mohli prirovnáť k termoskómu, ktorá veľká časť tepla dokáže udržať pasívnym spôsobom, bez aktívneho vykurovacieho systému. Tam by sme mohli hľadať pôvod názvu pasívny dom, ktorý je často odvodený od pasívnych systémov, ktoré nepotrebujú pre svoje fungovanie žiadnu alebo minimálne množstvo energie, ako napríklad pasívne využívanie slnečnej energie. A to aj do veľkej miery platí. V pasívnom dome prispievajú pasívne slnečné zisky v celkovom potrebe tepla na vykurovanie asi jednou tretinou. Obdobiamy s najväčšími ziskami sú práve jar a jeseň. Na druhej strane pre zabezpečenie optimálnej klímy v letnom období je potrebné dom aktívne tieniť. To naznačuje, že pasívny dom veľmi citlivě reaguje na podmienky okolitého prostredia a je potrebný citlivý prístup architekta pri tvorbe dobrého konceptu.

Pasívne domy niesu v našej legislatíve definované. Popularizácii tejto koncepcie sa venu-je Inštitút pre energeticky pasívne domy, o.z., ktorý sa opiera do definíciu Dr. Wolfganga Fe-
ista (Passivhaus Institut Darmstadt), autora konceptu pasívneho domu.

Metodika výpočtu optimálne pasívnych domov sa zakladá na výpočtom a optimalizačnom nástroji PHPP (Passive House Planning Package), ktorý je podrobnejší a presnejší a odsúhlasuje sa od národného metodiky výpočtu podľa STN. Aj z tohto dôvodu nebolo možné pasívne domy v našej legislatíve definovať. Pasívne domy v súčasnosti predstavujú najvyšší „bežný“ standard energetickej efektivnosti. Sú východiskom pre ďalšie rozvíjajúce sa koncepcie budov s takmer nulovou spotrebou energie, plusových, či aktívnych domov. Koncept PD so sebou prináša aj výrazne vyššiu kvalitu vnútorného prostredia. Konštrukcie bez tepelných mostov zaisťujú vyrovnávanú sálavú zložku žiarenia povrchov, nedochádza k studenému sálaniu a konvekcii studeného vzduchu, nie je nutné inštalovať vykurovacie telesá pod okenné plochy na eliminovanie studeného sálania a na vykurovanie stačia nižšie teploty do dosiahnutie rovnakej tepelnej pohody ako pri bežnom dome. Ďalším kvalitatívnym benefítom je riadené vetranie, ktoré neustále zabezpečuje prívod čerstvého vzduchu a odvod vydýchania vzduchu z intériu, ako aj zníženie hlúčnosti. Toto všetko pasívne domy pri-
nášajú a sú výzvou nielen pre obytné budovy, ale aj pre školské stavby, či administratívne budovy. /Krajcsovics, Pifko 2013/

Glosár Rady architektov Európy /ACE 2013/ nazýva toto „prísne a dobrovoľné“ chápanie pasívneho domu „štandardom PD“ a z jeho kritérií uvádza len potrebu tepla na vykurovanie. V chápaní ACE je „pasívny dom“ budovou, v ktorej zabezpečenie pohody a kvality vnútorného prostredia nevyžaduje „aktívne“ (teda technikou zabezpečované) kúrenie, chladenie ani vetranie – toto však nie je, s výnimkou niekoľkých oblastí s extremnou priaznivou klímou, reálne dosiahnutelné.

3.8.4 Aktívny dom


Počas stretnutia asociácie „Aktivehouse“ bola v roku 2010 prijatá Kodanská deklarácia, ktorá definuje pojem aktívny dom vo výrazne širšom kontexte a so snahou dať odpoveď na otázku, či nanášaj a sú výzvou nielen pre obytné budovy, ale aj pre školské stavby, či administratívne budovy. /Krajcsovics, Pifko 2013/

Hodnotiace kritériá /Active... 2013/:
• zameranie a optimalizácia návrhu na energetickú efektívnosť
• využitie pasívnych koncepčných riešení na kúrenie a chladenie
• využitie obnoviteľných zdrojov energie
• do výpočtov je zahrnutá aj energia potrebná na výrobu materiálu a emisie CO₂
• jednotkové hodnotenie na meter štvorcový alebo obyvateľ a.

Kvalita vnútorného klímy

Ako už bolo spomenuté v budovách trávime až 90% nášho času a preto je nevyhnutné popri energetickej efektivite zvyšovať kvalitu vnútorného prostredia. Pre užívanie budovy je toto najrozhodujúcejší faktor, pred estetickým a energetickým. Studené sálenie, plesne, príliš chladný vzduch z klimatizácie, sú len niektoré z problémov, ktoré nás tápia v budovách. Dobrá správa je, že narastajúce požiadavky na energetickú efektívnosť nám pomáhajú kvalitu vnútorného prostredia zvyšovať (pozri kapitolu Pasívny dom). Okrem zatepleňovania tepelných mostov a riadené vetranie s rekuperáciou je kvalita vnútorného prostredia rozšírená o koncepciu prirodzeného osvetlenia všetkých priestorov, tienia počas leta a zabráneniu oslnenia. O fyzikologickom a psychologickom pôsobení sôlnečného žiarenia na človeka existuje dostatok odborných štúdií a výskumov.

Hodnotiace kritériá /Active... 2013/:
• Tepelný komfort v lete a v zime
• Osvetlenie a insolácia, zniženie rizika oslnenia
• Zaťaženie hlukom
• Kvalita vzduchu v interiéri
• Vplyv stavebných materiálov na vnútornú klimu

Životné prostredie

Popri vytváraní umelého obytného prostredia s čo najväčšou energetickou efektívnosťou začínajú čoraz viac naberať na význame materiálové toky v budove, počas výstavby a jej odstránení. Do popredia sa dostávajú ekologické materiály na ktorých výrobku je potrebné malé množstvo energie, sú recyklované alebo prirodzene odbúrateľné. Takisto v interiéri sa preferujú materiály, ktoré majú priaznivé účinky pre lúdsky organizmus.

Hospodárenie s vodou, zachytávanie vody v krajinie a jej čistenie, nie je dôležité len pre naše vodné toky, ale aj ako jeden z účinných nástrojov na prevenciu povodní a zniženie prehrievania siedel.

Hodnotiaci kritériá /Active... 2013/:  
• Spotreba neobnoviteľných zdrojov, hodnotenie stavebných materiálov z hľadiska ŽP
• Environmentálna zátáž emisií do vzduchu, pôdy a vody
• Spotreba pitnej vody a nakladanie s odpadovou vodou
• Ohľad na kulturný a ekologický kontext

Koncepcia aktívneho domu je krokom k holistického prístupu pri posudzovaní budov od energetickej efektívnosti k celkovému posudzovaniu vplyvov budovy na životné prostredie. Niektoré realizácie dosahujú počas svojej životnosti pozitívnu bilanciu emisií CO₂, čo znane ná že emisie zabudované v stavebných materiáloch (drevo) sú väčšie, ako budova vyprodukova počas výstavby a ušetrila svojou prevádzkou (výroba elektriny na budove). Efektýným príkladom je Sunlight House v Rakúsku /Sunlighthouse 2013/ – takáto realizácia je významným krokom k udržateľnej výstavbe. /Krajcsovics, Pifko 2013/

3.8.5 Nulový, plusový, autónomný dom LK HP

Nulovým domom (Zero Energy Building – ZEB) nazývame budovu, ktorá vyrába energiu z obnoviteľných zdrojov (aspoň toľko energie, kolko potrebuje na svoju prevádzku. Potreba primárnej energie je teda preobrávená energiou získanou z prostredia či z obnoviteľných zdrojov v /na /pri budove. Toto pokrytie posudzujeme v ročnej bilancii.

Základným predpokladom pre nulové domy je ultranízkoenergetický až pasívny energetic ký štandard tak, aby bola dosiahnutá čo najnižšia vytváranie emisií CO₂. Táto vytvára predpoklad pre pokrytie spotreby energie obnoviteľnými zdrojmi napríklad z fotovoltaických článkov, či malých veterných turbin. Trend v energetickej spotrebe a distribúcii smeruje k inteligentným sieťam (Smart grid) a ostrovným energetickým systémom, ktoré dokážu fungovať efektívnejšie. Potenciál využitia obnoviteľných zdrojov je obmedzený a preto aj v Stratégii Európa 2020, je kladený dôraz na zvýšenie energetickej efektívnosti:
• zvýšenie energetickej efektívnosti o 20%
• zvýšenie použitia obnoviteľných zdrojov o 20%
• zníženie emisií CO₂ o 20%.

ND dodáva prebytky vyrobenej energie do verejnej siete a v prípade nedostatočnej produkcie „na mieste“ z nej chybajúcu energiu odobera – energetická siete teda slúži ako „akumulátor“ a odpadá problém s dlhodobým skladovaním energie, ktorý predražuje autónomné domy. Autónomný dom dokáže zabezpečiť svoju energetickú spotrebu bez napojenia na verejne energetické siete. Príkladom autónomného fungovania sú napríklad horské chaty.

Podľa toho, ako dodanú, či odobranú energiu posudzujeme, hovoríme o rôznych typoch nulových domov a keď hovoríme o nulovom dome, mali by sme spresniť, o ktorý z nižšie uvedených typov nulových domov sa jedná:
• ND na základe energetickej bilancie, ktorú môžeme počítať na mieste stavby, čo je naj-jednoduchší spôsob, no neberie do úvahy spôsob získavania energie odoberenej z verejnej siete ani jej environmentálne náklady.
• ND na základe bilancie pri zdroji, ktorá počíta s primárnou energiou, zohľadňuje straty pri výrobe a dodávke energie – je to korektnejšia a odporúčaný prístup, ktorý odraža skutočný prínos nulových domov pre udržateľnosť.
• Ekonomicky nulový dom má v rovnováhe celkovú cenu dodanej a odobranéj energie. Pre užívateľa je to zaujímavý údaj (dom funguje zadarmo), no meniace sa ceny a podmienky odbieru energie môžu posúdiť a porovnávať skresliť.

Plusový dom je obdobou nulového domu, vyprodukuje však z obnovitelných zdrojov pre verejnú siet’ viac energie, než z nej odobere. Možno budeme v budúcnosti hľaďať na všetky domy ako na malé elektrárne. Ak to dokážeme dosiahnuť tak, aby energetické zisky neboli na úkor kvality architektúry, plusový dom môže byť zaujímavým príspěvkom k udržateľnosti výstavby. V súčasnosti už pozorujeme prvé lúche a záznamy medzi takýmito stavbami hlavne v Nemecku a Rakúsku. /Krajcsovics, Pifko 2013/

3.8.6 Takmer nulový dom LK HP

Budova s takmer nulovou spotrebou energie (angl. nearly zero energy building) je budova s veľmi vysokou energetickou hospodárnosťou, pri ktorej je potrebné takmer nulové, alebo veľmi malé množstvo primárnej energie. Užívanie takejto budovy musí byť zabezpečené efektívnou tepelnou ochranou a vo vysoké miere energiou dodanou z obnovitelných zdrojov nachádzajúcich sa v budove, alebo v jej blízkosti /STN 730540, 2012/. Podľa Smernice 2010/31/EU o energetickej hospodárnosti budov najneskôr po roku 2020 musia byť všetky nové budovy realizované ako budovy s takmer nulovou spotrebou energie na prevádzku.

Dom s takmer nulovou spotrebou energie by mal byť z hľadiska stavebno-konštrukčnej a technickej stránky veľmi efektívny objekt, doplnený o technológie využívané obnoviteľných zdrojov energie priamo v budove, na nej či v jej bezprostrednej blízkosti. Takto získaná energia z obnovitelných zdrojov by mala v ročnom súhrne pokrývať takmer celú potrebu energie na prevádzku nulového domu.

Národný plán zameralný na zvyšovanie počtu budov s takmer nulovou spotrebou energie /Návrh..., 2013/ konštatuje: „V súčasnosti sú bytové a nebytové budovy na území Slovenska stavané predovšetkým v energeticky úspornej úrovni výstavby. Sú známe budovy navrhované v nízkoenergetickú úrovni a navrhované a aj postavené budovy v úrovni pasívnych budov. Nie sú známe príklady výstavby a ani prípravy budov s takmer nulovou spotrebou energie, ktoré majú iný koncept ako energeticky pasívne domy.“

„Pre dosiahnutie parametrov TNB je potrebné vychádzať z akceptovania a stanovenia troch na seba nadväzujúcich kritérií /Návrh..., 2013/: a) Zniženie mernej potreby tepla na vykurovanie na minimum. Takéto kritérium vyžaduje kvalitný návrh obalových konštrukcií budovy, a predpokladá využitie solárnych a vnút. ziskov. b) Zniženie potreby primárnej energie na vykurovanie, chladenie, vetranie, prípravu teplé vody a osvetlenie. Kritérium už vyjadruje spojenie stavby a technológií. Má vplyv na zniženie predpokladanej spotreby palív a inej formy energie a lepšie vystihuje environmentálny vplyv užívania budovy. Očakávané zniženie potreby primárnej energie približne o 50 % má priamy vplyv výsledkovo emisií CO₂, ako aj znečišťujúcich látok. c) Značné pokrytie celovej potreby primárnej energie obnovitelnými zdrojmi energie. Doda-ním energie z obnovitelných zdrojov energie (ďalej OZE ) nachádzajúcich sa v budove alebo v jej blízkosti by sa malo dosiahnuť najmenej 50 %-né zniženie primárnej energie.“

Postupné sprísňovanie požiadaviek na tepelnotechnické vlastnosti stavebných konštrukcií vo W/(m².K) – údaj pre rok 2018 platí len pre budovy štátnej a verejnej správy /Návrh..., 2013/:
„Kvalitná tepelná ochrana obalu budovy je základom, ale nie je zábezpečou dostatočného technického návrhu. Architektonický a technický návrh budovy musí byť vypracovaný s nízkou členitostou pri ciennej orientácii zasklených otvorových výplní budovy (s efektívnym využívaním tepelných získov), s vylúčením tepelných mostov (so znížením tepelných strát), riadenym vetraním s rekuperáciou. Výrazné úspory energie v budúcnosti však znamenajú zvyšené investičné náklady na začiatku výstavby.“ /Návrh..., 2013/


<table>
<thead>
<tr>
<th>Faktor tvár budovy 1/m</th>
<th>Potreba tepla na vykurovanie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximálna</td>
</tr>
<tr>
<td>≤ 0,3</td>
<td>70,0</td>
</tr>
<tr>
<td>0,4</td>
<td>78,6</td>
</tr>
<tr>
<td>0,5</td>
<td>87,1</td>
</tr>
<tr>
<td>0,6</td>
<td>95,7</td>
</tr>
<tr>
<td>0,7</td>
<td>104,3</td>
</tr>
<tr>
<td>0,8</td>
<td>112,9</td>
</tr>
<tr>
<td>0,9</td>
<td>121,4</td>
</tr>
<tr>
<td>1,0</td>
<td>130,0</td>
</tr>
</tbody>
</table>

Potreba tepla na vykurovanie v závislosti od faktoru tváre /STN 73 05 40 2012/

Merná potreba tepla stanovená podľa tejto normy slúži na vzájomné porovnanie projektového riešenia budov, zohľadnením vplyvu osadenia budovy vzhľadom na svetové strany a tepelnotechnickej kvalite stavebných konštrukcií. Nie je hodnotením skutočnej spotreby energie v konkrétnej podmienkach osadenia a spôsobu užívania budovy.

„Splnenie požiadaviek na energetickú úroveň výstavby pre jednotlivé stavebné konštrukcie a príslušné kategórie budov sú len prvým predpokladom dosiahnutia takmer nulovej potreby primárnej energie. Takmer nulovú potrebu energie budovy je potrebné vo vysokej mierë zabezpečiť energiou z obnovitelných zdrojov nachádzajúcich sa v budove alebo v jej blízkosti. Smerníctvo takto posilňuje záväzneť využívania obnoviteľných zdrojov energie (ďalej len OZE) pri výstavbe nových budov.“ /Návrh, 2013/ 


„Priebežné ciele pre dosiahnutie jednotlivých energetických úrovní výstavby sú stanovené v troch časových etápsich nasledovne:

a) nízkoenergetická úroven výstavby pre nové aj obnovované budovy od 1.1.2013 daná hronou hranicou energetického triedy B pre jednotlivé kategórie budov;

b) ultranízkoenergetická úroven výstavby pre všetky nové budovy od 1.1.2016, daná hronou hranicou energetického triedy A1, pre obnovované budovy za predpokladom splnenia podmienok potrebné úrovne nákladovej optimálne;

c) energetická úroven budov s takmer nulovou potrebu energie pre nové budovy, ktoré užívajú a vlastnia orgány verejnej moci od 1.1.2019 a všetky nové budovy od 1.1.2021. Je daná vo vyhláške hornou hranicou energetického triedy A0 pre globálny ukazovateľ. Pri obnovovaných budovách sa táto hranica energetického úrovne požaduje len vtedy, ak je to technicky, funkčne a ekonomicky uskutočniteľné.“ /Vyhláška 364, 2012/

Architektovi musia byť známe riešenia na navrhovanie v nízkoenergetickom štandarde už od tohto roku a na projektovanie v ultranízkoenergetickom štandarde v roku 2015. Projektová príprava TNB musí vychádzať z toho, že budova z čistého potrebiča energie mení svoj
koncepciu, ktorá sa zakladá na využití OZE. Tvar budovy, jej orientácia, kvalitná tepelnoizolačná obálka a otvorové výplne, prispôsobené technické zariadenia tvoria súčasť konceptu nových TNB. Projektant ich pri návrhu musí detailne poznáť a zohľadniť už v architektonickej štúdi. Požadovaná náročnosť na projektanta by mala len podporiť snahu Slovenskej komory architektov na systémové dodatočné vzdelávanie. /Krajcsovics, Pifko 2013/

Ani v „našich“ podmienkach už nie je dosahovanie štandardu TNB nereálnym snom – dokazuje to objekt spoločnosti Atrea v Koberovech (foto Atrea s.r.o.).
A-IV PREČO CERTIFIKOVÁŤ, PREČO SPOLOČNÝ NÁSTROJ

4.1 Dôvody pre certifikáciu, využiteľnosť spoločného nástroja

Sektor stavebnictva zodpovedá za 40% konečnej spotreby energie a 36% emisií CO2 v celej EÚ – z tejto skutočnosti vychádzajú ciele, ktoré stanovila Európska únia na ochranu klímy pre rok 2020. V súvislosti s politikou EÚ sa dá očakávať, že najmä vlastníci verejných budov budú vyzvaní na zhodnotenie ich súčasnej investičnej politiky a pre budúce stavby na formulovanie nových štandardov kvality.

V snahe nadziazať na úsilie EÚ a s vedomím, že verejné budovy skrývajú veľký potenciál na dosiahnutie úspor energie, projekt CEC5 sa snaží o zjednotenie certifikácie verejných budov nielen z hľadiska energetickej úspornosti, ale aj celkovej udržateľnosti.

Čo sú očakávané prínosy certifikácie?

- Návrh opatrení umožňujúcich obci a regiónom stavať kvalitné a energeticky efektívne.
- Pomoc miestnym a regionálnym občanom, ktorých sídla a budovy boli pod cieľom, že sa budú energeticky úsporné.
- Predstavenie ekologicky šetrného štandardu energetickej efektívnosti.
- Navyšenie investicií do obnoviteľných zdrojov energie.
- Príspevok k dosiahnutiu celoeurópskych úspor energie, projekt CEC5 sa snaží o zjednotenie certifikácie verejných budov.
- Zmena vnímania verejných budov ako najhorších z hľadiska energetickej efektívnosti.

Ak sa podarí vytvoriť jednoduchý a plošne použiteľný certifikačný nástroj, ktorý bude zároveň návodom, aké pravidlá dodržiavajú aj budovy, ktoré boli postavené do druhého dňa, uvedené prínosy bude reálny dosiahnuť. Motto projektu CEC5 znie: „Nedovolte vašej energii uleťť strechou!“

4.2 Projekt CEC5

4.2.1 Zadanie a zmysel projektu CEC5

Základným zadáním projektu CEC5 bolo preverenie, za akých podmienok je možné mať v strednej Európe jednotný certifikačný nástroj pre posudzovanie miery udržateľnosti projektovania, hodnotenia a výstavby. Cieľom projektu je vytvoriť štandardy, ktoré podporia dopyt po vysoko ekologickej budovách a budujúcich zdrojoch a originálně. Európske krajinami majú rôzne metódy pre hodnotenie ekologickej a energetickej efektívnosti budov. Všetky tieto metódy majú podobné ciele a metódy, ale do buď podmienky sú odlišné. Navyše náklady pre hodnotenie ekologickej a energetickej efektívnosti budov. Všetky tieto metódy majú podobné ciele a metódy, ale do budov, ktoré budú postavené do druhého dňa, uvedené prínosy bude reálny dosiahnuť. Motto projektu CEC5 znie: „Nedovolte vašej energii uleťť strechou!“

U bežných spotrebných výrobkov je tiež samozrejme, že sú vybavené návodom na použitie, teda podrobnou informáciou o funkciách, životnosti, požiadavkách na údržbu a obsluhu. V prípade budov sa potrebuje takisto informáciu pri odvzdaní budovy do užívania (okrem certifikátov použitých materiálov) ešte nevžila. Je zrejmé, že podporu vznikne na informáciu o spôsobe používania budov sa bude odvijať od funkcie budovy, jej užívatelia, spôsobu jej prevádzky a tiež podľa predpokladaných prevádzkových nákladov. V súčasnej dobe je v rámci procesu stavebného konania povinnostiou stavebníka zabezpečiť taký projekt, ktorý preukáže požadované úroveň energetickej hospodárnosti budovy – na to slúži Projektové hodnotenie energetickej hospodárnosti budovy (PHEH). Týmto hodnotením je však zohľadnené iba kritérium energetickej náročnosti stavby a stále je veľmi nedostatočne rozšírené povedomie o širokom spektru vplyvov na celkovú udržateľnosť (a teda aj užitočnosť) budovy.

Existuje celý rad nástrojov hodnotenia budov, ktoré sú zamerané na udržateľnosť. Váčšinou sú to nástroje založené na komerčnej báze. Tieto certifikačné nástroje posúdzujú budovy z celoslovenského hľadiska a zaoberajú sa environmentálnymi vplyvami všetkých častí budovy počas celého jej životného cyklu – od získavania primárnych surovín, výroby, dopravy, realizáciu až do likvidácie (či recyklácie) stavby. Certifikácia budov týmoto komerčnými nástrojmi slúži najmä marketingovým účelom, zhodnocuje nehnuteľnosť, môže byť užitočná pri získavaní peňazí z dotačných zdrojov a v niektorých prípaa-
doch je užitočná aj pri optimalizácii návrhu. Počas riešenia projektu CEC5 sa ukázalo, že bude užitočné, vzhľadom k veľkému počtu rôznych pomerne náročných a nákladných certifi-
kácných systémov, vytvoriť zjednodušený verziu certifikačného nástroja, ktorý nemá ko-
merčné základy a dokáže zvšeobecniť parametre certifikácie tak, aby boli zrozumiteľné a použitelné v čo najširšom meritiu a s čo najčiššimi nákladmi. Systém by mal byť zároveň aj pomôckou a vodítkom pre architektov či projektantov-špecialistov pri procese navhovania budovy podľa zásad udržateľnosti.

Práce na projekte CEC5 viedli k synergii s ďalšími projektmi EU s podobným zameraním a najmä s iniciatívou CESBA, ktoré hlavným cieľom je vytvoriť harmonizované platformu pre projektovanie a výstavbu udržateľných budov a vyvinúť spoločný európsky hodnotiaci rámec udržateľnosti budov. Je zrejmé, že ak na európskej úrovni chceme zosúladit systémy hodno-
ten, v prvé rade je potrebné zhodnotiť sa na spoločných cieľoch a na princípoch a postu-
poch na ich dosiahnutie. Principy hodnotiaceho nástroja CESBA a ciele hodnotenia verej-
ných budov sú v prvom rade tieto:

- **Na prvom mieste uživatelia** (cieľom je navrhnúť, postaviť a prevádzkovať budovy, ktoré splňajú potreby užívateľov a ich požiadavky na komfort, no súčasne je ich výstavba a pre-
vádzka ekologická a ekonomická).
- **Udržateľnosť** (hodnotenie zohľadňuje všetky tri kritériá udržateľnosti - ekonomické, so-
ciaľne i environmentálne) a posúdza sa podľa celý životný cyklus budovy).
- **Regionálny kontext** (systém hodnotenia udržateľnosti budovy treba uviest do súladu s regi-
onom, v ktorom sa má využívať, zohľadnac medzistrušieľ: klímu, zdroje, priority, predpisy, kultúru, zvyky a obvyklé stavebné postupy).
- **Porovnateľnosť** (nová jednotným princípom a špecifikovaným cieľom sú výsledky po-
rovnateľné na základe definovaných vstupných informácií).
- **Masovo orientovaný prístup** (aby hodnotiaci systém podporil zvýšenie udržateľnosti vo vý-
stave, musí byť všebolé, všetkých zainteresovaných: architektmi, projektan-
tmi, verejnými orgánmi a organizáciami, investormi, stavebnými firmami...).
- **Jednoduchosť použitia** (aby hodnotiaci systém podporil zvýšenie udržateľnosti vo vý-
stave, musí byť jednoduchý na použitie, cenovou dostupný, zrozumiteľný a užitočný).
- **Otvoreny prístup** (aby hodnotiaci systém podporil zvýšenie udržateľnosti vo vý-
stave, musí byť otvorený, ktorého cieľom je umožniť všetkým zainteresovaným súborom k

CEBSA ponúka katalóg kritérií, ktorý je v súčasnosti v ťažkosti prispôsobeným hodnotiacih nástrojov a ich ďalšieho rozvoja. Štartuje harmonizované.

**4.2.2 Priebeh projektu CEC5**

Projekt sa zúčastní osem stredoeurópských štátov vrátane Slovenskej republiky, ktorá je zastúpená jednou organizáciiou, Trnavským samosprávnym krajom. V prvom roku projektu prebehla fáza prereformovania použitelnosti existujúcich certifikačných nástrojov pre model spolo-
čného nástroja, pre vývoj spoločného certifikačného nástroja boli použité kritériá z existujú-
cích nástrojov. Nástroj ENERGYBUILD bol vyhodnotený ako najviac zodpovedajúci zadaniu a požiadavke všebolého návytku. Výsledkom ďalšieho vývoja bol nástroj CEB (Common European Building Assesment) a jeho optimalizáciou pre použitie v rôznych európských krajínach vznikol nástroj CESBA (Common European Sustainable Building Assesment). Nástroj samotný vychádza z hodnotenia ENERGYBUILD a z legislatívy príslušnej krajiny či re-
giónu. Drobné modifikácie boli začlenené po expertnom mitingu vo Wolfrute. Metodika je koncipovaná najmä pre budovy realizované v verejných súkromných vývojač o vývoje (v súčasnosti sú k dispo-
zičii nástroje a manuály pre hodnotenie novostavieb a rekonštrukcií budov bez pammiatkovéj
ochrany). Snahou je, aby sa vzťahom k jednoduchej dostupnosti dostala v najbližších rokoch do povedomia a aby sa jej použitie rozšírilo na všetky budovy – to by mala podporiť medzinárodnú platformu nástroja a jeho vysokú kompatibility.

 Hodnotenie je možné vykonávať ako vo fáze projektové prípravy, tak aj po realizácii stavby. Pre dosiahnutie čo najlepšieho výsledku je samozrejme nutné využiť nástroja CESBA v čo najskorších štádiách projektovej (a prípadne aj predprojektovej) prípravy, optimálne v procese „integrovaného projektovania“. Treba zdôrazniť, že CESBA je zamýšlená nielen ako certifikačný program, ale najmä ako pomôcka či sprievodca pre celý proces vzniku budovy od prípravy zadania cez projekt až k realizácii stavby – s ohľadom na udržateľnosť a v multikriteriálnom prístupe, ktorý zahŕňa hodnotenie spoločenských aspektov, dopravné dostupnosti budovy, ekologických vplyvov použitých materiálov a technológií, energetickej bilancie (na základe miestnych a v legislatíve už zakotvených metodík), kvality vnutorného prostredia, hospodárenia s vodou a hodnotenia ekonomickej návratnosti investícií.

Na seriózne posúdenie navrhovanej stavby je nutný kvalitne spracovaný projekt (projekt pre stavebné konanie doplnený detailami (i realizačný projekt) a projektové hodnotenie energetickej hospodárnosti budovy alebo výpočet PHPP), ktorý u nás získame nie je samozrejmostou. Pre posúdenie realizovanej stavby sa namiesto projektového hodnotenia použijeme energetický certifikát.


4.2.3 Všeobecné rozšírenie výstupov projektu

Úsilie vynaložené na projekt CEC5 by nemalo skončiť odovzdaním získaných poznatkov miestnym a regionálnym orgánom a/alebo profesijným organizáciám. Cieľom je presadiť udržateľnú výstavbu ako „dobrú prax“ vo verejnem sektore a následne tieto skúsenosti a podopreté inšpirujúcim príkladom prenášať do výstavby obytných budov, administratívnych objektov a ďalších stavieb súkromných investorov. Nástrojom bude príručka a spoločný stratégický akčný plán pre novostavby energeticky efektívnych budov, ďalšie aktivity budú navrhované a monitorované nadnárodnou platformou expertov.

Problematica energetických úspor v súvislosti s cenami energií, s energetickou bezpečnostou i výpym na prostredie sa objavuje v médiách čoraz častejšie – v dôsledku toho sa v súčasnosti za udržateľnú budovu všeobecné považuje budova so znížením energetickej náročnosti bez ohľadu na ďalšie aspekty udržateľnosti. Túto prax treba zmeniť a treba venovať viac pozornosti urbánneho kontextu, miere využívania obnoviteľných zdrojov, kultúrnym a sociálnym aspektom udržateľnosti a „environmentálnym“ nákladom počas celého životného cyklu budovy. Ekologicky šetrné riešenia môžeme dosiahnuť cestou:

• vytvorenia certifikačného procesu (vyvinutie a zavedenie certifikácie budov z hľadiska energetickej účinnosti a vymedzenie vzorového riešenia, ktoré by mohlo podporiť dopyt po energeticky úsporných, až pasivných stavbách),
• výstavby alebo renovácie modelových budov (ukážka energetickej účinnosti v praxi, propagácia nízkoenergetických budov a princípov dosahovania úspor energii smerom k výsledných a zásťupom verejného i súkromného sektora),
• založenia nadnárodnej siete (zabezpečenie kontinuity, šírenia výsledkov projektu a prevynos know-how v oblasti energeticky efektívnosti).
4.3 **Prínosy certifikácie pre účastníkov procesu výstavby**

V súčasnej bežnej praxi stavebného a realitného trhu rozhodujú o certifikácii udržateľnosti budov najmä developeri a investori. Aby sa hodnotiací nástroj stal prínosom a masovo vyhovoval podnikom, je potrebné, aby bol zameraný na potreby užívateľov a bol viac prínosný než záťažou pre investora. Pozrime sa, čo proces certifikácie prináša jednotlivým účastníkom procesu výstavby a užívania budov.

4.3.1 **Investor, developer**

Pre developera či investora je budova, ocenená certifikátom dokladujúcim jej environmnetálné kvality, zaujímavá najmä preto, že zaručuje vyššiu a stabilnejšiu trhovú cenu budovy. Certifikát udržateľnosti budovy je dobre využitelným marketingovým nástrojom, použiteľným ako pre propagáciu samotnej budovy, tak pre tvorbu PR jej majiteľa, investora či developera. Subjekt, ktorý staví a prevádzkuje ekologicky šetrnú budovu, týmto spôsobom preukazuje svoju vlastnú udržateľnosť.

4.3.2 **Majiteľ, potenciálny kupec**

Nadštandardné kvality, garantované certifikátom, sú zaujímavé aj pre majiteľov budovy či zúčastných sa v jej kúpe. Certifikát zvyšuje záujem o prenájom bytov alebo kancelárií v budove, a teda aj ich hodnotu a trhovú cenu, pretože budúci nájomca má garantované nízke prevádzkové náklady a kvalitu vnútorného prostredia. Deklarovanú kvalitu budovy je možné využiť aj v rámci politiky vztahov s verejnou, je konkrétne na prehliadku aj pre zamiatateľa.

4.3.3 **Užívateľ objektu**

Certifikát budovy je dokladom toho, že budova od projektu po realizácii prechádza procesom s vyšším nárokom na technickú kvalitu, kvalitu vnútorného prostredia a splnenie ďalších kritérií udržateľnosti. Užívateľ bytov v certifikovaných domoch má vyššie riešenie komfortu a kvality vnútorného klímu pri menších prevádzkových nákladoch oproti bežnej výstavbe. V administratívnych a prevádzkových budovách, kde zamestnanci žijú na svahu svojho pracovného času, je zlepšenie vnútorného prostredia – vizuálneho, akustického a tepelného komfortu – prínosom nielen pre nich, ale v dôsledku aj pre zamestnávateľa.

4.3.4 **Projektant, realizačná firma**

Firmy, ktoré sa zúčastňujú na stavebnom procese, môžu využiť proces certifikácie na zvyšenie kvality svoje práce a zhodnotenie svojich výstupov podľa kritérií udržateľnosti. Realizácia stavieb, ktoré sú ocenené certifikátom, je špičkovou referenciou pre získanie ďalších zákaziek. Je zrejmé, že pre dôveryhodnosť procesu certifikácie je vhodné, aby posúdenie budovy a pridelenie certifikátu vykonával nezávislý subjekt.

4.3.5 **Spoločnosť**

Z celospoločenského hľadiska je proces certifikácie dokladom udržateľných prístupov a ochrany životného prostredia. Certifikovaná verejná budova spravidla viac počíta s účastou, prítomnosťou verejnosti, znižuje náklady spoločnosti na svoju stavebnú a prevádzku a minimizuje svoje nezodpovedné vplyvy na prostredie (aj na svoje bezprostredné okolie) počas celého svojho životného cyklu.

4.3.6 **Cena za tieto prínosy**

"Avšak certifikácia samozrejme prináša aj určité náklady. A to predovšetkým finančné, do ktorých sa zahŕňajú aj súvisiace vyššie náklady na riadenie ľudských zdrojov a na úroveň know-how. Vlastná certifikácia je menšou položkou všetkých nákladov, stojí rádovo promile z investičných nákladov. Vyššie náklady môžu vznikať v súvislosti s úpravou projektu či stavby na takú úroveň, ktorá nepri časť požadovaných požiadaviek na udržateľnú výstavbu. Aj napriek tomu sa certifikácia oplatí. Štúdie z USA napríklad ukazujú, že najlepšie udržateľné budovy nemajú vyššie viacnáklady než 10%, vo Veľkej Británii je situácia obdobná. A napríklad vo
Švajčiarsku je podložené, že trhová cena certifikovanej budovy pre bývanie je spravidla vyššia ako viacnáklady súvisiace s dosiahnutím nejakej vyššej úrovne.” /Štár 2014/

O týchto skutočnostiach sú investori dobre informovaní a každej investičti predchádza jej podobná analýza, zahŕňajúca všetky náklady vrátane certifikačného procesu, a tiež ich návratnosť a prínosy (vrátane mimoekonomických benefítov). Vidíme, že investori často siahnu aj po drahej komerčnej certifikácii – neroobili by to, nemali istotu, že sa im tá investícia vráti.

4.4 Praktické využitie nástroja CESBA

Z vyššie uvedeného je zrejmé, že v závislosti na rôznych klimatických, sociálnych, ekonomických a politických podmienkach vznikajú na rôznych miestach stavby, ktorých hodnotenie spoločným certifikačným nástrojom je stážené neporovnatelnými vstupnými podmienkami. Zásadnou premíou pre návrh udržateľnej budovy je uvedomenie si, že úroveň jej udržateľnosti možno ovplyniť najmä v raných fázach návrhového procesu.

Počas vývoja projektu jednotliví partneri, zastupujúci rôzne štáty, vzniesli požiadavku, aby nástroj rešpektoval doteraz platné pravidlá a legislatívy. Nástroj bude teda používaný v rámci európskej subsidiarity: každý subjekt si zásady implementuje do svojho prostredia v súlade s miestnymi podmienkami a legislatívou. Zo zákonného nástroja zvaného CESBA Generic TOOL vznikli lokalizované nástroje, na Slovensku to je nástroj s názvom CESBA Tool SK.

4.4.1 Verejné obstarávanie

Certifikačný nástroj je pripravený tak, aby mohol dobre fungovať aj ako metodická pomocnica pri hodnotení projektov vo verejnom obstarávaní – ako objektívne kritérium v súlade s principmi udržateľnej výstavby. Tabuľka s bodovým hodnotením (vrátane návodu a postupu hodnotenia) je ideálne podkladom pre porovnávanie projektov, pre ich jednotné a objektívne posúdenie. Súčasťou zadania prítom musí byť požiadavka na splnenie parametrov daných nástrojom CESBA.

Tento spôsob hodnotenia verejných záväzkov samozrejme nemôže fungovať, ak hlavným kritériom pri výbere dodávateľa záväzok je najnižšia cena. Súťaž o získanie záväzku, teda o podiel na investicii, obstarávanej z verejných finančných zdrojov, musí byť založená na odbornej spôsobilosti dodávateľa a na kvalite poskytovaných služieb, nie na najnižšej ponukovej cene. Tiez v celoeurópskeho a globálneho hľadiska je takáto súťaž príznosom ako ekonomickým, tak spoločenským. Ďalším kritériom pri výbere ako architekta, tak i dodávateľa, môže byť znalosť miestnych pomerov.

"Lokálne ateliéry, ktorých majitelia majú priamy záujem na poskytovaní kvalitných služieb, môžu byť len zriedka kedy prekonané v poskytovaní kvalitných projektových výkonov. Osobný prežitok a znalosť kultúrno historických kvalít miesta, miestnych zdrojov a miestne výrobaného zariadenia sú najvhodnejšie metódami pri výbere ako architekta. V takých prípadoch je možné podnikat na podstaví ich znalostí a zkušeností..sk/ 2012a/

4.4.2 Verejná architektonická súťaž

Rovnako, ako pri verejnom obstarávaní, môže byť certifikačný nástroj dobrým pomocníkom aj pri výhodnocovaní architektonických súťaží. "Základným predpokladom pre udržateľné plánovanie je možnosť výberu a porovnávania možných riešení. Na tomto princípe sú založené urbanistické a architektonické súťaže, ktoré sú najvhodnejšie metódou pre výber spracovateľa zákaziek." /Borák 2012b/

"Voľná súťaž je pre trhovú ekonomiku zásadná. Af je však založená na najnižšej ponukovej cene a zákazky, ktoré sú najhodnotnejšie a najvýhodnejšie.“ /Stará 2014/
losti dodávateľa a na kvalite poskytovaných služieb. Súťaž založená na tom, kto ponúkne najnižšiu cenu, skracuje čas pre kvalitný rozvoj projektu a vo výsledku vedie k riešeniam, ktoré sú z dlhodobého hľadiska zlé. Pre zniženie ceny projektu sa architekt spája s dodávateľom stavby a jeho cieľom nie je poskytnúť investorovi nezávislú odbornú službu. Ochranu spotrebiteľa sa znižuje.

Pre dosiahnutie vyššej miery udržateľnosti je potrebné revidovať zákony o verejnom starani a podporovať rozvoj projektov, aby zvýšili možnú kvalitu plánov a projektov, a aby podporovali rovnaké šanse malých a drobných podnikov v súťaži. Nesmie umožniť výber založený na najnižších nákladoch, ale už v prípade projektov na základe Schoriana Architektu a jeho požiadaviek rešpektovať, aby výsledný projekt bol v súlade s kritériami udržateľného stavania.

4.4.3 Proces projektovania

Nástroj CESBA, vyvinutý projektom CEC5, by sa mal používať najmä ako matrica pre projektovanie, ako vodítko projektantom, ako postupový nástroj, ako podporovateľ rešpektovania, aby výsledný projekt bol v súlade s kritériami udržateľného stavania.

Proces certifikácie alebo predbežná certifikácia je často náročná záležitosť nie je teda vždy v procese projektovnej prípravy reálny, keďže je závislý na možnosti získania všetkých dát potrebných pre hodnotenie. Dále spolocný spoločný nástroj by mal pokračovať v prípade optimalizácie a zlepšenie návrhu vo výrobe na udržateľné výsledky už v procese projektovania – musí teda zjednodušiť a dohodnúť projektovú práci, v rámci ktorého bude využívaná takmer prečíslovateľná informácia, v prípade akom stupni kvality sa návrh pohybuje.

Aby sa poznatky získané v projekte CEC5 stali užitočnými spoločným pre autorizované osoby sa zameraním na záujem verejnosti a na zvýšenie miery udržateľnosti vo verejnych budovách. Mala by tiež koordinovať distribúciu odborných informácií s cieľom prepojiť podnikateľskú, užívateľskú, súkromnú a štátnu sféru a implementovať do praxe nové poznatky. Cieľom by malo byť zvýšenie povedomia laickej i odbornej verejnosti o výsledných verejnych budovách, o energeticky efektívnej výstavbe a o možnostiach zvyšovania miery udržateľnosti budov.

4.4.4 Proces výstavby

Je samozrejmé, že projekt budovy a jeho kvalita nebudú mať žiadny vplyv na reálitu, ak zásady implementované do projektu nebudú použité v praxi. Na procese výstavby ukážkových verejných budov v rámci projektu CEC5 je predviedená praktická aplikácia nástroja CESBA a jeho možné prínosy pre kvalitu výstavbného diela v závislosti na tom, v ktorej fáze vzniku budovy boli použité princípy obsiahnuté v tomto nástroji.

4.4.5 Kontrola kvality

Nástroj CESBA môže byť tiež použitý pre predbežnú verifikáciu správneho projektového riešenia, pre zistenie komplexnej kvality a dosiahnutého stupňa udržateľnosti budovy, teda ako nástroj architekta pre obhájanie projektu pred investorom. Možno ho tiež využiť na optimizáciu projektu na základe aktualizovaných vstupných kritérií.

Aj kontrolu kvality realizácie počas výstavby a kontrolo dosiahnutej environmentálnej kvality pri odovzdávaní stavebného diela je možné vykonávať podľa metodiky CESBA a s využitím kritérií tohto nástroja – ich splnenie je zárukom kvality výslednej budovy. Prepodkladáme, že uvedené overenie dosiahnutej kvality bude v budúcnosti nutnou podmienkou pre získanie dotácií či iných podporných opatrení.

4.4.6 Politické rozhodovanie

Využívanie nástroja CESBA v masovom merítku (prinajmenšom na všetky stavby z verejných zdrojov, ideálne na všetku výstavbu) by napomohlo napriek problémom pre investorov a verejnosť, ktorú mala by mzuť v praxi. Projekt CESBA by mal podriadiť verejné rozpočty, aby výsledne rozhodovanie o financovaní nových projektov bolo založené na udržateľnosti.
B-V PRÍKLADY BUDOV POSÚDENÝCH NÁSTROJOM CESBA

V rámci projektu CEC5 je predstavených osem demonštračných budov, ktoré predstavujú príklad dobrej praxe. Niektoré z nich už prešli vzorovou certifikáciou nástrojom CESBA.

- Krajina Vorarlbersko, Rakúsko: Life Cycle Tower One, Dornbirn /CEC5 2014a/
- Kraj Vysočina, Česká republika: Lidmaň - Ústav sociálnej starostlivosti /Vysočina 2014/
- Moravskosliezsky kraj, Česká republika: Ostrava, Školiace centrum INTOZA /Intoza 2014/
- Město Ludwigsburg, Nemecko: Detské centrum Gartenstrasse 14 /Ludwigsburg 2014
- Magistrát mesta Udine, Taliansko: PV panely na vzdéľávacom komplexe /Comune 2014/
- Město Bydgoszcz, Polsko: Areál Technickej školy /Czystabydgosz 2014/
- Údolie rieky Soča, Slovinsko: Rekonštrukcia budovy /Prc 2014/
- Mesto Trnava, Slovensko: Stredná odborná škola v Senici /CEC5 2014b/

5.1 Life Cycle Tower One

Stavbou, ktorá v rámci projektu funguje ako školiace a demonštračný objekt, je Life Cycle Tower One (Veža životného cyklu 1) v rakúskom Dornbirne. Administratívna budova s prenajmateľnými priestormi rôznych velikostí je navrhnutá ako osempodlažná drevostavba so železobetónovým komunikačným jadrom – základnou myšlienkou bolo vytvoriť modularné opakovateľné stavbu.

Pre stavbu LCT1 v areáli bývalej textilnej továrne Rhomberg bol použitý systém "Cree". Montáž drevostavby trvala len osem dní. O to dlhšia bola prípravná a projektová fáza. spoľočnosť Cree pozvala k spolupráci významného rakúskeho architekta Hermanna Kaufmana. Spoločnosť Cree vychádza z filozofie a životného štýlu severoamerických domorodcov tohto mená, ktoré v súčasnej interpretácii previedla do skratky "cree" = Creative Resource & Energy Efficiency (tvorivá efektivita zdrojov a energií) – ide o zdroj nápadov a iniciáciu nových stratégií udržateľného zaobchádzania a spolužitia s prírodou a jej zdobami. Spojenie s vorarlberskou Rhomberg Group a know-how interdisciplinárneho tímu je zárukou maximálneho zhodnotenia s použitím systému „cree“, čo vo výsledku predstavuje:

- hospodárne využitie energií a zdrojov,
- výrazné zníženie uhlíkového dôrazu,
- skrátenie času stavby takmer na polovicu,
- nízke prevádzkové náklady,
- splnenie najaktuálnejších bezpečnostných noriem.

Ďalšie atribúty systému „cree“ prinášajú výraznú zmenu pre výstavbu v mestách:

- menej hluku počas stavby, menej prachu a odpadu,
- systém je viacúčelový, variabilný, fasáda podľa individuálnych požiadaviek,
- priemyselná, sériová výroba – realizácia jedného podlažia za deň,
- konštrukcia umožňuje výstavbu až 30 podlaží (100 m výška budovy),
- zlepšenie bilancia skleníkových plynov až o 90%.

Konštrukčné a technologické riešenie:

- Nosná konštrukcia stien: masívne drevené prvky, o 30% lepšia konštrukcia než zo železobetónu; zdvojené trámy 3 × 0,24 × 0,49 m.
- Stropné prvky: panely 8,1 × 2,7 m, drevobetónová konštrukcia, rozpätie 8-10 m, montáž trvá 10 minút; povrch: miestny smrek či jedľa, zhora armovaný betón.
- Fasádne prvky: drevená rámová konštrukcia panelov 12 × 3,3 m, štandard PD.
- TZB: individuálne riešenie zásobovania energiou.
- Jadro: z požiarnobezpečnostných dôvodov železobetónové, v ňom výťah a schodisko.

Kombinovaná drevená konštrukcia LCT zaručuje minimalizáciu použitia neobnoviteľných surovín a energií počas celého životného cyklu budovy. Optimálnou kombináciou materiálov je dosiahnutá úspora až 50% prírodných zdrojov. Jednotlivé komponenty systému (jadro, panely, fasádne stĺpy) sú prefabrikované v priemyselnom meradle a umožňujú rôzne modu-

5.2 Ústav sociálnej starostlivosti, Lidmaň,


...
implementoval zásady udržateľnej výstavby. Nebolo teda možné zlepšiť energetickú a eko-
logickú kvalitu stavby podľa odporúčaní vyplývajúcich z vykonaného hodnotenia (napr. budo-vaného nie je kompaktné, okná majú malý podiel zasklenia a malé solárne zisky, tepelné mosty nonie sú dôsledne minimalizované...) a preto tu došlo k významnej bodovej strate vo výslednom hodnotení CESBA v časti "kvalita procesu plánovania" aj v ďalších častiach. Tiež nebolo možné pripojiť fotovoltaickú krytinu do rozvodnej siete, čo znižilo využitelnosť produkcie fotovoltaického systému. Budova je dvoje hodnotená v časti "energie a zásobovanie" predovšetkým vdaka použití fotovoltaiky a absencii chladenia (čo by pre takýto objekt malo byť samozrejmeľno), spotreba energie na vykurovanie je však príliš vyskáka, žiadne body nepri-
niesla. Ide sice o (na naše pomery) nadstandardne "zateplenú" stavbu, no podľa hodnotenia PENB (Prúkaz energetické náročnosti budovy) dosiahla iba triedu B (merná potreba tepla na vykurovanie 49 kWh/m² za rok (pre vzťahov plochu 716,5 m²), podľa PHPP (Passive House Planning Package) je merná potreba tepla na vykurovanie 59 kWh/m² za rok (pre vzťahov plochu 587,9 m²), čo je štvornásobok (!) požiadavky kladenej na pasívne domy) – vidieť, že najvy-
ššie požiadavky na moderné budovy nemožno splniť iba hrúbkou izolácií a použitou techni-
kou, nutná je aj optimalizácia architektonického návrhu a starostlivé riešenie detailov. Objekt nepočítala ani sa zadržiavaním dažďovej vody a jej ďalším využívaním v budove alebo na po-
zemku. Veľmi málo bodov dosiahla budova v časti "stavebné materiály a konštrukcie", keďže boli použité bežné stavebné materiály s vysokou zátarzou životného prostredia (aj to je dô-
sledok toho, že návrh budovy už nebolo možné optimalizovať pomocou nástroja CESBA), k zlepšeniu skôre však pomohla výstavba na mieste nevyhovujúceho objektu.

<table>
<thead>
<tr>
<th>Číslo</th>
<th>Názov kritéria</th>
<th>Povinné kritéria (M)</th>
<th>max. počet bodov</th>
<th>dosazený počet bodov</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1.</td>
<td>Kvalita miesta a vybavení</td>
<td>max. 50</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>A 2.</td>
<td>Ekologická kvalita miesta</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>A 3.</td>
<td>Vybavenosť pro cyklisty</td>
<td>25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B 1.</td>
<td>Kvalita procesu plánovania</td>
<td>max. 200</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>B 2.</td>
<td>Rozhodovací proces a provádění variant</td>
<td>25</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>B 3.</td>
<td>Definování očekávaných energetických a ekologických cílů</td>
<td>M</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>B 4.</td>
<td>Produkty a management - zabudovanie nízkoemisiích stavebných výrobkov a s nízkosmùm obsahom škodlivín</td>
<td>M</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>B 5.</td>
<td>Energetická optimalizace projektu a detailní přezkoumání energetických výpočtů</td>
<td>60</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>B 6.</td>
<td>Informace pro uživatele</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>C 1.</td>
<td>Energie a zásobování</td>
<td>max. 450</td>
<td>448</td>
<td></td>
</tr>
<tr>
<td>C 2.</td>
<td>Potřeba energie na vytápění dle PHPP</td>
<td>M</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>C 3.</td>
<td>Potřeba energie na chlazení dle PHPP</td>
<td>M</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>C 4.</td>
<td>Primární energie dle PHPP</td>
<td>M</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>C 5.</td>
<td>Fotovoltaika</td>
<td>75</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>C 6.</td>
<td>Rozlíšení spotřeby energie</td>
<td>50</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>C 7.</td>
<td>Spotřeba vody vždyži doživotné vody</td>
<td>30</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>D 1.</td>
<td>Zdraví a komfort</td>
<td>max. 200</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>D 2.</td>
<td>Tepelná pohoda v letním období</td>
<td>150</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>D 3.</td>
<td>Udržitelnost</td>
<td>40</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>D 4.</td>
<td>Důležité osvětlení</td>
<td>40</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>E 1.</td>
<td>Stavební materiály a konštrukce</td>
<td>max. 200</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>E 2.</td>
<td>OIstroj, ekologický index obálky budovy (resp. při teplým hmotně budově)</td>
<td>200</td>
<td>105</td>
<td></td>
</tr>
</tbody>
</table>

| Součet | max. 1000 | 760 |
5.3 Školiace centrum “Otazník” spoločnosti INTOZA

Sídlo firmy, školiace stredisko a dom služieb spoločnosti INTOZA v Ostrave (Moravskosliezský kraj) je navrhnuté s jednoduchou konštrukciou a kompaktým tvarom ako štvorpodlažný kváder (16,2 x 23,7 x 15,4 m), v prvých dvoch podlažiach sú prezentované služby a výrobky pre výstavbu pasívnych domov. Aj preto je budova koncipovaná (v duchu filozofie firmy zaobierajúcej sa energetickej efektívnosťou) ako vzorový energeticky pasívny objekt.

Zámer investora bol realizovať administratívnu budovu v štandardne pasívnom domu v súlade s medzinárodnou metodikou PHPP. Pre splnenie tejto požiadavky bol koncepčný návrh niekoľkokrát zmenený: od prvotného návrhu "solárneho domu" s maximom presklených plôch cez koncept horizontálnych okenných pásov až k výslednému návrhu objektu takmer kubického tvaru so samostatnými okennými výplňami. Tento vývoj „dizajnu“ je príkladom optimalizácie s cieľom dosiahnutia vysokiej energetickej efektívnosti budovy.

Nosnou konštrukciou objektu je železobetónový monolitický skelet, obvodové steny majú výmurovku z vápennopieskových tehál a sú z vonkajšej strany zaizolované penovým polystyrenom s prímesou grafitu. Penový polystyren je použitý tiež ako tepelná izolácia strechy a základovej dosky. Zdrojom energie pre vykurovanie, ohrev teplej vody a chladenie je tepelné čerpadlo s výkonom 16,6 kW (s možnosťou revertného chodu na chladenie v lete). Na streche objektu je umiestnených 48 fotovoltaických panelov a dva teplovodné kolektory. Získaná obnoviteľná energia je primárne využitá v objekte, prebytky elektriny sú odovzdávané do verejnej siete. Riadenie vnútorného prostredia budovy z hľadiska optimálneho stavu a stability je automatizované riadiacim systémom s najmodernšími prvkami a flexibilným programom, pričom všetky výstupy sú prehliadne prezentované na informačnom displeji vo vstupnej hale objektu.

Parametre objektu: zastavaná plocha 408,0 m², obostavaný priestor 6194,7 m³, úžitková plocha 1267,7 m², 55 zamestnancov, 50 návštevníkov v prednáškovej sále. Energetické parametre podľa PHPP: vzťažná plocha 1062 m², merná potreba tepla na vykurovanie 11,5 kWh/m²a, celková potreba primárnej energie 111 kWh/m²a, neprievzdušnosť n₅₀ (zmeraná blower-door testom) 0,17 h⁻¹.

V hodnotení CESBA bola budova hodnotená po dokončení stavby podľa projektových podkladov predložených investorom. Dosiahla len 760 z 1000 možných bodov napriek tomu, že ide o energeticky najúspornejšiu administratívnu budovu v Českej republike. Strata bodov bola najmä kvôli plánovaciem procesu (chybajú štúdia nákladov navyše, certifikácia PD a proces výberu a posudzovania stavebných materiálov z ekologického hľadiska) a za nepreukázanú kvalitu vnútorného prostredia (chybajú posúdenia akustiky, osvetlenia a letnej tepelnjej stability).
B-VI CERTIFIKAČNÉ NÁSTROJE

6.1 Charakteristika nástrojov na posudzovanie udržateľnosti

V súčasnosti existuje viacero certifikačných systémov a štandardov, ktoré pomáhajú určiť mieru súladu budov s princípmi udržateľnej výstavby. Impulzom pre ich vznik bola potreba stanoviť, ako sú budovy užitočné, a nutnosť posúdenie vplyvu vzniku i prevádzky budovy na životné prostredie.

Každá budova má iný pomer rozloženia miest spotreby, preto bolo nutné vytvorenie hodnotiacich systémov na vyčlenenie jednotlivých vplyvov na prostredie a možné vzájomné porovnávanie. Budovy, ktoré získali certifikát v rámci niektorého z hodnotiacich systémov, sú často označované ako zelené budovy.

V Európe sa najviac používajú štyri hlavné systémy certifikácie. Britský BREEAM, nemec-ký certifikát DGNB, v spojených štátoch vyvinutý LEED a SBTool s rôznymi variáciami. Okrem nich je používané niekoľko národných certifikačných systémov, v ČR SBToolCZ.


Postupne boli do hodnotiacich kritérií pridávané technické, ekonomické, sociálne a procesné aspekty a hodnotenie sa rozšírilo na celý životný cyklus budovy. Vznikli tak certifikáty druhej generácie, pre tzv. "udržateľné budovy". Do tejto skupiny patria veľká väčšina súčasných certifikačných systémov.

Ekologické riešenia sú zvyčajne spojené s vyššími investičnými nákladmi, ale nízke prevádzkové náklady prinášajú pre developerov výhody vo forme väčšej konkurencieschopnosti na trhu s nehnuteľnostami a väčšie zisky z prenájmu budovy. Tieto výhody na trhu s nehnuteľnosťami postupne spôsobili vyššiu hodnotu certifikovaných budov. Certifikované budovy dneška majú ambíciu garanťovať vyššiu kvalitu vnútorného prostredia, čo sa prejavuje nižšou chorobnosťou používateľov, lepšia sústredenosť a vyššou efektívitou práce. To sú benefici, ktoré patria k hlavným dôvodom, pre ktoré firmy uprednostňujú výstavbu alebo prenájom certifikovanej budovy. Certifikácia budov vytvára na trhu tlak na skvalitňovanie budov a posun k ekologickým a celkovo udržateľnejším riešeniam.

6.2 Jestvujúce certifikačné nástroje

Rôzne programy, metodiky a softvérové nástroje slúžiace na hodnotenie vplyvu stavieb na životné prostredie a na certifikáciu budov možno rozdeliť podľa zamerania hodnotenia na nástroje:

• "zamerané na čiastočne materiály, prípadne čiastočne konštrukcie a posudzujúci obmedzene množstva environmentálnych kritérií v priebehu životného cyklu, "
• zamerané na celú budovu a posudzujúci detailnejšie energetickú a environmentálnu kritériu v priebehu životného cyklu, "
• zamerané na nielen na budovu, môžu posudzovať aj okolie budovy, a to nielen z hľadiska životného prostredia, ale aj ekonomického, sociálneho a kultúrneho - tieto postupy sú často len na úrovni metodík s iba čiastočnou softvérovou podporou ". /Vonka 2012/

Problematická je vzájomná porovnateľnosť certifikátov. skladba kategórií hodnotenia a jednotlivých kritérií, ako aj množstvo parametrov je v každom systéme inej, pretože každý vznikal v inom prostredí a v inej stavebné kultúre. rovnaký parameter je v inom certifikačnom systéme posudzovaný v inej kategórii, čo dalej stáraľa vzájomnú porovnávanie. Najčastejšie hodnotené kategórie sú energia, vnútorné prostredie, voda, materiály, odpad, lokalita, proces výstavby, doprava, ekonomía či inovácie.
6.2.1 BREEAM
www.breeam.org

Prvý holistický certifikačný systém vznikol v roku 1990 v spojenom kraľovstve s názvom BREEAM (BRE Environmental Assessment method) v spoločnosti BRE (Building Research Esta-blishment). Je vyvinutý ako pomôcka pre architektov a projektantov pre zmiernenie vplyvu projektov na životné prostredie.

V súčasnosti sú k dispozícii dve verzie certifikátu. Prvý pre administratívne budovy, priemysel, školy, budovy štátnej správy a druhá pre súdnenie, zátišie (15%), energie (19%), dopravu (8%), vodu (6%), materiál (12,5%), odpad (7,5%) , znečistenie (12%), záber pôdy (10%).

Do roku 2013 bolo v Spojenom kraľovstve týmto systémom ohodnotené približne štvrt miliónu budov, a to hlavne kvôli povinnej certifikácii od mája 2008 mimo Spojené kráľovstvo je certifikovaných približne 200 budov.

6.2.2 LEED
www.gbci.org


Hodnotené sú ekológia miesta (26%), voda (10%), energetická účinnosť a obnoviteľné zdroje (35%), šetrenie materiálov a zdrojov (14%), kvalita vnútorného prostredia (15%), inovatívnosť návrhu (6%). Certifikačným systémom LEED je vo svete certifikované cez 173 000 projektov.

6.2.3 DGNB Deutsche Gesellschaft für Nachhaltiges Bauen
www.dgnb.de

Značka kvality DGNB požaduje integrálné plánovanie vrátenie stanovenia cieľov udržateľnosti a zohľadňuje ekologické a ekonomické faktory. v súčasnosti najkomplexnejším hodnotiacej systém DGNB (Deutsche Gesellschaft für Nachhaltiges Bauem) nehodnotí len jednotlivé kritériá, ale systém budovy ako celok: environmentálne hľadisko udržateľnosti, sociálne hľadisko udržateľnosti, ekonomické hľadisko udržateľnosti. Preto je nazývaný certifikačným systémom tretej generácie, nazývaným Blue buildings - modré budovy. (Analógia je napríklad nová flotila automobilky volks-wagen, ktorá je charakteristická úspornosťou a nazýva sa "Bluemotion"). Spoločnosť DGNB vznikla v roku 2007 v spolupráci s nemeckým ministerstvom pre dopravu, výstavbu a územný rozvoj. Ich cieľom je vytvoriť prostredie, ktoré je ekologicky prijateľné, šetrné k zdrojom za ekonomicky prijateľných podmienok a vytvára zdravé a komfortné mikroklimu pre užívateľov. Nemecký certifikačný systém vychádza vo všetkých oblastiach s ohľadom na normy, zákony a smernice Europskej únie.

Hodnotené sú: ekologická kvalita (22,5%), ekonomická kvalita (22,5%), sociálne a kultúrne kvalita (22,5%), technická kvalita (22,5%), kvalita manažmentu (10%) a kvalita lokality. Týmto certifikačným systém bolo do roku 2013 certifikované 726 budov.

6.2.4 SBToolCZ Sustanable Building Tool (Cz)
www.sbtool.cz

V Českej republike sa pre certifikáciu budov uživa od roku 2010 národná schéma SBToolCZ. Česká metodika pre hodnotenie komplexnej kvality budov posudzuje charakteristiky
budovy vrátane okolia z pohľadu udržateľnosti. Hodnotí sa vplyv budovy na životné prostredie, jej sociálno-kultúrne aspekty, funkčná a technická kvalita, lokalita, ekonomika a manažment a v neposlednom rade aj projektové príprava.


Kategórie hodnotenia:

• Ekonomika a manažment: redukcia nákladov životného cyklu, facility manažment, odparové hospodárstvo.
• Sociálne kritériá: pohoda v interiéri, vnútorná klíma, užívateľský komfort, zdravotná nezávadnosť.
• Environmentálne kritériá: ochrana životného prostredia, energia, emisie, materiálové kanály, pôda, voda ...
• Lokalita: kvalita lokality, dostupnosť služieb, doprava ...

Metodika je založená na multikriteriálnom prístupe, kedy do hodnotenia vstupuje sada rôznych kritérií. Ich rozsah sa líši podľa typu budovy a podľa fázy životného cyklu, ktorý je posudzovaný. v prípade bytových budov vo fáze návrhu sa metodikou SBToolCZ hodnotí 33 kritérií, u administratívnych budov vo fáze návrhu sa hodnotí celkom 39 kritérií.

Každé kritérium sa ohodnotí v stupnici 0 až 10 (10 - najlepší stav), získané body sa prenásobia váhami a výsledného výsledku sa priradí výsledný certifikát kvality (pri zisku 0-39% sa stav označuje ako "budova certifikovaná", pri 40-59% sa dostane bronzový certifikát, 60-79% strieborný certifikát a nad 80% certifikát zlatý).

Hlavné ciele metódiky SBToolCZ možno zhrnúť do nasledujúcich bodov:
• poskytnutie dôveryhodného certifikátu o zhode stavby s legislatívnymi požiadavkami a s princípmi udržateľnej výstavby,
• zvýšenie trhovej hodnoty budov a zniženie ich prevádzkových nákladov,
• podpora znižovania energetickej náročnosti budov a to v súlade so smernicou Európskeho parlamentu a Rady 2010/31/EÚ o energetickej hospodárnosti budov EPBD II,
• hodnotenie budov v rámci aspektov v oblasti udržateľnej výstavby,
• optimalizačný nástroj navrhovania budov lepšie splňujúcich požiadavky klientov,
• zmiernenie vplyvu stavieb na životné prostredie v priebehu celého životného cyklu,
• podpora vytvorenia dobrého a zdravého vnútorného prostredia budov,
• motivácný prvok pre výrobcu - environmentálne prehlásenie o produkte. /Vonka 2011b/

6.2.5 Príklady ďalších nástrojov

Certifikovaný pasívny dom – certifikácia podľa Passivhausinstitut Darmstadt (PHI) a výpočtového programu PHPP – sa zaobera kritériom energetickej úspornosti stavby. Ročná potreba energie na vykurovanie nesmie presiahnuť 15 kWh na m² obytnej plochy, takže vefká časť tepelných strát je pokrytá solárnymi získami či vnútornými zdrojmi a potreba aktívneho systému vykurovania je minimalizovaná. Pre obmedzenie environmentálných dôsledkov sa vyžaduje potreba primárnej energie na celú prevádzku budovy do 120 kWh/m²a a pre kontrolu kvality stavby výsledok BDT do 0,6 h⁻¹. PHI zabezpečuje aj certifikáciu komponentov vhodných a odporúčaných pre pasívne domy. /EPD 2014/
**ENERBUILD – ENERgy Efficiency and Renewable Energies in the BUILDing sector in the Alpine space.** Nástroj sa zameriava na posilnenie zložky SME (Structural and Materials Engineering / inžiniering konštrukcií a materiálov) v stavebnictve s cieľom posilniť interdisciplinárnu prevaznosť a spoluprácu v súvislosti s novými požiadavkami na výrobu a úspory energie v budovách. Vďaka vzrastajúcej zložitosti v tejto oblasti developmentu služí program najmä investorom verejných budov ako podklad pre rozhodovacie procesy. /Enerbuild 2014/

### 6.3 Cesta k CESBA

Prestrojstvo a zložitosť používaných certifikačných nástrojov je dôvodom k snahe o vytvorenie spoločného nástroja. Tým sa snažia preukázať správnu hodnotu univerzálnej kvality budov a ich minimalizovať užitočnosť. Često sa používale zložité certifikácie v súčasnosti, ktoré majú dvojmu zložitosti v súčasnosti. Vďaka vzrastajúcemu požiadavkom na zlepšenie kvality stavania v súčasnosti, je potrebné zvýšiť kvalitu stavania v súčasnosti. Vďaka vzrastajúcemu požiadavkom na zlepšenie kvality stavania v súčasnosti, je potrebné zvýšiť kvalitu stavania v súčasnosti.

#### 6.3.1 Certifikácia v súkromnej a verejnej sfére

Výše menované certifikačné nástroje sú používané najmä ako preukáz správnosti, užitočnosti, a tým spravidla aj nižších prevádzkových nákladov budov. Rozšírili sa medzi investormi budov a spôsobili, že kvalita stavania v súčasnosti znatne vzrástla. Tento trend sa však takmer úplne vyhol budovám realizovaným z verejných prostriedkov a logicky sa naskytla otázka, čo by sa mohlo stať, aby verejné budovy boli certifikované a porovnávali z hľadiska miery ich udržateľnosti? Dôvodov, čo ne sú súčasné certifikačné nástroje udržateľnosti budov používané vo verejnej sfére, je celý rad.

**Cena**


**Doba potrebná pre certifikačný proces**

Zber detailných informácií o celom procese vzniku budov a o budove samotnej, rovnako ako následná analýza a vyvodenie záverov potrebujú čas, ktorý je spravidla v dĺžke niekoľkých mesiacov, niekedy aj dlhšie. Pre certifikáciu verejnych budov by bolo vhodné nájsť spôsob, ako proces certifikácie urýchliť, a to aj za cenu jeho zjednodušenia.

**Nároky na odbornosť certifikátorov**

Správny zber informácií, voľba spôsobov analýzy, a najmä formulácia objektivizovaných záverov vyžaduje veľkú mieru odbornosti a skúsenosti certifikátorov. Takých odborníkov je nedostatok a ich práca je pochopiteľne drahá.

**Nároky na kontrolu objektivity a kvality certifikácie**

Vzhľadom k tomu, že výsledok certifikácie významne ovplyvnuje trhovú hodnotu nehnuteľností, je predvídať, že trh vyvolá tlak na deformáciu certifikačných výsledkov. Preto majú jednotlivé certifikačné systémy rôzne spôsoby dohľadu nad procesom certifikácie. Tie obmedzujú počet kvalifikovaných certifikátorov, ktorí sú na trhu k dispozícii.
Malý záujem objednávateľa na podmienkach a prevádzkových nákladoch

Vo verejnej sfére je nadobúdateľ budovy (napr. investičné oddeľenie inštitúcie) niekedy odlišný od prevádzkovateľa budovy (prevádzkové oddeľenie, príspevková organizácia ...) a investičné výdavky idú spravidla z iného udroje než prevádzkové náklady. Chýbajúci ekonomický tlak však nie je nahradený zástupným legislatívnym tlakom, ktorý by objednávateľa nútil usilovať sa o budovu s čo najvyššou mierou udržateľnosti.

6.3.2 ÚZ a harmonizácia - certifikácie udržateľnosti budov

Oťazka "Prečo nie je certifikácia udržateľnosti používaná vo výstavbe z verejných rozpočtov?" bola v pozadí vypísaná výzvy na projekte CEC5 v rámci programu CENTRAL EUROPE. Práca na projekte nadväzovala na už skôr spracované projekty zdielajúce rovnakú skúsenosť a sa rovnakou témou z rôznych poľa. Tieto projekty vyvinuli, porovnávali, zosúladili a skúmali rôzne hodnotiace systémy budov. Pre vývoj spoločného rámca pre hodnotenie budov zohrali najdôležitejšiu úlohu programy EÚ IRH-med, sUPERBUILDING, Openhouse, a najmä ENERBUILD a cabe. Dôležitosť spoločnej stratégie komunikácie ukázal program EÚ Visible.


Práca na projekte CEC5 viedla k záverom, že v prostredí verejných investícií, kde chýba príjmy hospodársky záujem objednávateľa budovy na budúcich prevádzkových nákladoch a na preukaze kvality budovy v obec, musí byť certifikačný nástroj, ktorý má ambíciu masového použitia, jednoduchost (nie desiatky kritérií, ale len tie základné, ľahko dostupný (nie špecializované certifikačné osoby ale len zaškolené autorizované osoby), rýchly (nie mesiace, ale dni pre certifikáciu) a lacný (nie tisíce, ale maximálne 2000 eur za certifikáciu budovy). Výsledok certifikácie verejných projektov budov smerom k ich vyššej udržateľnosti. Umožní tiež vzájomné porovnávanie výsledkov a poskytuje príležitosť učiť sa z úspešných výsledkov iných. Predpokladané prínosy iste budú motívciou pre úpravy súčasného legislatívného a profesionálneho prostredia v jednotlivých regiónoch EÚ, aby bola plná certifikácia udržateľnosti možná aj u budov z verejných zdrojov.

V SR bola už v rámci projektu CEC5 vyvinutá lokalizovaná verzia nástroja CESBA označovaná ako CESBA tool SK – jej zhrnutie tvorí nasledujúcu kapitolu tejto publikácie.
### C-VII POUŽÍVANIE NÁSTROJA CESBA

Základom používania nástroja CESBA je jeho „Katalóg kritérií“, který slúži na dokumentáciu a hodnotenie energetických a ekologických kvalit novopostavených verejných budov (školy, materské školy, administratívne budovy, športové haly...). Hodnotenie budov sa vykonáva bodovým systémom s maximálnym počtom bodov 1000. Tieto body sa rozdelené do piatich kategórií hodnotenia:

- max. 100 bodov pre kvalitu miesta a vybavenia
- max. 200 bodov pre kvalitu procesu plánovania
- max. 400 bodov pre energia a zásobovanie
- max. 200 bodov pre zdravie a komfort
- max. 200 bodov pre stavebné materiály a konštrukcie

V každej rubrike hodnotenia sú rozlične dôležité kritériá, rozlišuje sa medzi povinnými a dodatočnými kritériami. Súčet bodového hodnotenia jednotlivých kritérií nemôže byť vyšší ako maximálne počty bodov, uvedené v príslušnej kategórii.

Preskúmanie a posúdenie prebieha vo dvoch fázach: pri dokončení projektu a po dokončení stavby. Vyhlásenie (deklarácia výsledku) sa vykonáva podľa zoznamu kritérií a týchto vysvetlení. Vo vysvetleniach sú uvedené nielen kritériá, ale aj špecifikácia nevyhnutných podkladov na doloženie ich naplnenia.

#### Kritériá pre verejné budovy (novostavby):

<table>
<thead>
<tr>
<th>Číslo</th>
<th>Názov kritéria</th>
<th>Povinné (P)</th>
<th>Max.body</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>A</strong></td>
<td>Kvalita miesta a vybavenia</td>
<td></td>
<td>max. 100</td>
</tr>
<tr>
<td>A 1</td>
<td>Napojenie na verejnú hromadnú dopravu</td>
<td>P</td>
<td>50</td>
</tr>
<tr>
<td>A 2</td>
<td>Kvalita miesta a dostupnosť služieb</td>
<td>P</td>
<td>50</td>
</tr>
<tr>
<td>A 3</td>
<td>Bicyklové stojiská</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td><strong>B</strong></td>
<td>Kvalita plánovacieho procesu</td>
<td>max. 200</td>
<td></td>
</tr>
<tr>
<td>B 1</td>
<td>Architektonická súťaž a preverenie variantov</td>
<td>P</td>
<td>60</td>
</tr>
<tr>
<td>B 2</td>
<td>Definovanie overiteľných energetických a environ. cieľov</td>
<td>P</td>
<td>20</td>
</tr>
<tr>
<td>B 3</td>
<td>Zjednodušený výpočet hospodárnosti v životnom cykle</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>B 4</td>
<td>Produktový manažment - použitie vhodných stav. výrobkov</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>B 5</td>
<td>Projektové hodnotenie a energetická optimalizácia projektu</td>
<td>P</td>
<td>60</td>
</tr>
<tr>
<td>B 6</td>
<td>Informácia pre používateľa</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td><strong>C</strong></td>
<td>Energie a zásobovanie</td>
<td>max. 400</td>
<td></td>
</tr>
<tr>
<td>C 1</td>
<td>Potreba energie na vykurovanie</td>
<td>P</td>
<td>100</td>
</tr>
<tr>
<td>C 2</td>
<td>Potreba energie na vetranie a chladenie</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>C 3</td>
<td>Primárna energia</td>
<td>P</td>
<td>125</td>
</tr>
<tr>
<td>C 4</td>
<td>Ekvivalent emisií CO₂</td>
<td>P</td>
<td>75</td>
</tr>
<tr>
<td>C 5</td>
<td>Monitorovanie spotrieb energie</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>C 6</td>
<td>Spotreba vody / využitie daňovej vody</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td><strong>D</strong></td>
<td>Zdravie a komfort</td>
<td>max. 200</td>
<td></td>
</tr>
<tr>
<td>D 1</td>
<td>Tepelná pohoda v letnom období</td>
<td>P</td>
<td>120</td>
</tr>
<tr>
<td>D 2</td>
<td>Riadené vetranie hygienia a ochrana proti hluku</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>D 3</td>
<td>Denné osvetlenie</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td><strong>E</strong></td>
<td>Stavebné materiály a konštrukcie</td>
<td>max. 200</td>
<td></td>
</tr>
<tr>
<td>E 1</td>
<td>OI3 ekologický index obálky (resp. celkovej hmoty) budovy</td>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>

**Súčet** | max. 1000  |

---

Tento projekt je realizovaný v rámci operačného programu CENTRAL EUROPE a spolufinancovaný Európskym fondom pre regionálny rozvoj.
7.1 Kvalita miesta a vybavenia

7.1.1 Napojenie na verejnú hromadnú dopravu A 1

**Body:** 50 bodov (povinné kritérium)

**Cieľ:** Cieľom je, aby tovary a služby nevyhnutné ku každodennému životu boli v pešej dostupnosti, alebo boli pohodlne dostupné verejnou hromadnou dopravou. To vedie k zniženiu potreby používať auto, čo ma priaznivý vplyv na hluk a tvorbu exhalátov, na spotrebu energie v doprave, na bezpečnosť na komunikáciách a v neposlednom rade na kvalitu priestorov v sídle – je tu viac priestoru pre verejné plochy a zeleň, viac priestoru pre sociálne interakcie. Cieľom je teda redukcia individuálnej motorizovanej dopravy a preferencia pešej, cyklistickej a hromadnej dopravy.

**Vysvetlenie:**

Posudzujeme dostupnosť zástaviek mestskej hromadnej dopravy (MHD) či medzimestských, regiónálnych spojov (v oboch smeroch – berie sa ako jedna zástavka) a intervaly medzi jednotlivými spojmi, ktoré určujú pohodlie využívania a konkurencieschopnosť. Ak zástavku prechádza viac linek, uvažuje sa ako jedna linka so zhustenou frekvenciou. Ak sú dve zastávky jednej linky dostupné v danej vzdialenosti, berú sa ako jedna zástavka.

Liniek budú hodnotené iba v tom prípade, ak premávajú v pracovných dňoch od 7 do 19 hod. Pre každú linku sa uvedie frekvenciú vtoľom čase. Ak sa verejná budova nepoužíva celodenne, potom státia hodnotiť intervalovú frekvenciu v časovom rámci začínajúcom cca pol hodiny pred plánovaným používaním budovy a cca pol hodiny po jeho konci.

<table>
<thead>
<tr>
<th>Kritérium A 1 Typ dopravy a frekvencia</th>
<th>Frekvencia</th>
<th>Vzdialenosť</th>
<th>Body (max. 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mestská hromadná doprava (MHD) &lt; 30 min &lt; 300m</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mestská hromadná doprava (MHD) &lt; 30 min &lt; 500m</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mestská hromadná doprava (MHD) &lt; 60 min &lt; 300m</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mestská hromadná doprava (MHD) &lt; 60 min &lt; 500m</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>medzimestský autobus či vlaková stanica &lt; 60 min &lt; 500m</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>medzimestský autobus či vlaková stanica &lt; 60 min &lt; 1000m</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Doklad stavebník:**

Hodnotenie sa uskutočňuje podľa nasledujúcich podkladov: ako doklad je potrebné priložiť mapu v mierke 1:1000 s vyznačením 300, 500 a 1000-metrového polomeru okolo hlavného vstupu do budovy, s vyznačením navrhovanej budovy a jej hlavného vstupu, zástaviek mestskej hromadnej dopravy a medzimestských zástaviek, ako aj intervalov pre každú linku.

7.1.2 Kvalita miesta a dostupnosť služieb A 2

**Body:** 50 bodov (povinné kritérium)

**Cieľ:** Cieľom je, aby tovary a služby nevyhnutné ku každodennému životu boli v pešej dostupnosti v okruhu 500 m (7 minút chôdze pešo). Tieto trasy môžu byť absolovane pešo alebo na bicykli. Potreba používať auto je nižšia, čo ma priaznivý vplyv na životné prostredie v lokalite (menej hluku a exhalátov, viac priestoru pre zeleň a verejne plochy).

**Vysvetlenie:**

<table>
<thead>
<tr>
<th>Kritérium A 2 Funkcia do vzdialenosti 500 m</th>
<th>Body (max. 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obchody s potravinami a spotrebným tovarom (potraviny, drogérie, lekáreň...)</td>
<td>10</td>
</tr>
<tr>
<td>Škôlky a základné školy, jasle</td>
<td>10</td>
</tr>
<tr>
<td>Zdravotnícke zariadenia (praktický lekár, zubár, poliklinika, nemocnica)</td>
<td>10</td>
</tr>
<tr>
<td>Kostol a cirkevné zariadenia</td>
<td>10</td>
</tr>
<tr>
<td>Služby (reštaurácie, bufety, kaderníctvo, pošta, banka, miestny úrad)</td>
<td>10</td>
</tr>
<tr>
<td>Volnočasové zariadenia – šport/kultúra/soc. zariadenia (ihráčka, dom kultúry...)</td>
<td>10</td>
</tr>
<tr>
<td>Dostupnosť prirodného prostredia - (parky, lesoparky, lesy)</td>
<td>10</td>
</tr>
</tbody>
</table>
Ide tu o redukciu individuálnej motorizovanej dopravy a preferenciu pešej, cyklistickej dopravy. Je to kritérium typické skôr pre obytnú funkciu, no má zmysel aj pri verejných budo-vách - koncentrácia aktivít a služieb tiež prispieva k zniženiu potreby automobilovej dopravy.

Doklad stavebník:
Ako doklad dostupnosti služieb je potrebné priložiť mapu v mierke 1:1000 s vyznačením navrhovanej budovy a jej hlavného vstupu, kružnice s polomerom 500 m okolo hlavného vstupu a s vyznačením objektov z jednotlivých skupín s popisom funkcií.

7.1.3 Bicyklové stojiská A 3

Body: 25 bodov

Cieľ: Cieľom je presunúť krátke a stredne dlhé cesty z motorizovanej dopravy na bicykly (napr. aj elektrické bicykly). Tým sa znižuje spotreba energie a emisie CO$_2$ ako aj zaťaženie životného prostredia emisiami a hlukom a zlepší sa fyzická kondícia cyklistov.

V tejto oblasti sa ukrýva veľký potenciál: Dve tretiny všetkých jazd v meste sú kratšie ako 10 km. Mnohé z týchto cest by mohli byť bez významnej časovej straty absolvovalo bicyklov, pri pravidelnom používaní bicykla v každodennej doprave je ponuka cyklistických ciest a dostatočného množstva atraktívnych stojísk. Atraktivne znamená v tomto prípade: blízko vchodov do budov, prístupné jazdou bicyklom, zastratené a bezpečné voči krádeži. Cieľom je umožniť uživateľom čo najrýchlejší a bezbariérový prístup k bicyklu.

Vysvetlenie:
Kritérium je splnené, ak je k dispozícii dostatočné množstvo ďalšie popísaných bicyklových stojísk vyhovujúcej kvality. Bodovanie je podľa počtu stojískových miest, ktoré sú poskytnuté v kvalite, uvedenej niže.

**Kritérium A 3**

<table>
<thead>
<tr>
<th>Počet bicyklových stojískových miest</th>
<th>Minimum (15 b.)</th>
<th>Optimum (25 b.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodinný dom: 1 miesto na každých začatých x m$^2$ obytnej plochy</td>
<td>40 m$^2$</td>
<td>30 m$^2$</td>
</tr>
<tr>
<td>Bytový dom: 1 miesto na každých začatých x m$^2$ obytnej plochy</td>
<td>50 m$^2$</td>
<td>30 m$^2$</td>
</tr>
<tr>
<td>Admin. budova: odstavne miesta na zamestnanca / návštevníka</td>
<td>0,2 / 0,1</td>
<td>0,4 / 0,2</td>
</tr>
<tr>
<td>Materská škola: odstavne miesta na diela / pedagóga</td>
<td>0,1 / 0,5</td>
<td>0,2 / 0,9</td>
</tr>
<tr>
<td>Základná škola: odstavne miesta na žiaka / pedagóga</td>
<td>0,1 / 0,2</td>
<td>0,2 / 0,6</td>
</tr>
<tr>
<td>Stredná škola: odstavne miesta na žiaka / pedagóga</td>
<td>0,6 / 0,2</td>
<td>0,9 / 0,6</td>
</tr>
<tr>
<td>Domov dôchodcov: odstavne miesta na zamestnanca / obyvateľa</td>
<td>0,2 / 0,05</td>
<td>0,4 / 0,1</td>
</tr>
<tr>
<td>Sála (lokálne využitie): odst. miesta na zamestnanca / návštevníka</td>
<td>0,2 / 0,1</td>
<td>0,4 / 0,2</td>
</tr>
<tr>
<td>Sála (lokálne a redionálne využitie): miesta na zam. / návštevníka</td>
<td>0,2 / 0,05</td>
<td>0,4 / 0,15</td>
</tr>
<tr>
<td>Sála (nadregionálne využitie): odst. miesta na zam. / návštevníka</td>
<td>0,2 / 0,02</td>
<td>0,4 / 0,05</td>
</tr>
</tbody>
</table>

Vysvetlenie k pracovným miestam: u škôl sa k pedagogom zarátajú aj nepedagogickí pracovníci. Žiacia a škôlkária: osoby z časti obce, ktoré sa nachádzajú v bicyklovej dochádzke vzdialenosť (~300 m a <10 km). Návštevníci podujatia: počet pri plnom vyťažení budovy.

**Požadovaná kvalita a rozmery bicyklových stojisk:**

Pre používateľov s dlhšími parkovacími dobami (> 30 minút) vždy zastrešené vyhotovenie stojiska, alebo možnosť bezpečného uloženia bicyklo do uzamknutej miestnosti; bicyklové držiaky, ktoré umožňujú uzamknutie bicykov cez rám; prístupnosť jazdou, dobré osvetlenie, bezprostredná blízkosť vchodu (<30 metrov); v podzemných garážach alebo bicykláriach bezproblémový prístup jazdou a priamy vstup najviac cez jedny dvore. Bicyklové stojiská pre návštevy a krátkodobých parkujúcich musia byť vždy na úrovni terénu v exteriéri a aspoň polovica by mala byť zastrešená.

**Požadované rozmy: vzdialenosť medzi bicyklami pri normálnej polohy min. 80 cm, pri výškovo posunej mi. 45 cm, vzdialenosť bicykla od steny min. 35 cm, hlbka stojiska min. 2 m (pri prelihaní min. 3,2 m), šírka manipulačnej plochy pre pohyb bicykov min. 1,8 m.
Doklad stavebník:
Na získanie bodov sú potrebné nasledujúce doklady: plán, v ktorom je zaznávená poloha, výbava a počet stojísk a fotografie realizovaných stojísk (príjazd ku stojiskám, poloha voči vchodu do budovy, fotografie stojiska resp. priestoru pre bicykle).

7.2 Kvalita plánovacieho procesu

7.2.1 Architektonická súťaž a preverenie variantov B 1
Body: 60 bodov

Cieľ: Stať sa majú iba také budovy, pri ktorých je potvrdená ich nevyhnutnosť a využitie. Budova musí splniť funkčné požiadavky na optimálne užívanie a flexibilitu, variabilnosť pre požiadavky v budúcnosti – životnost budovy je v priemere 100 rokov. Požiadavky na sociálnu prijateľnosť a na ochranu životného prostredia sú predmetom posudzovania variantov. Veľmi efektívnou metódou posúdenia variantov je architektonická súťaž.

Vysvetlenie:

<table>
<thead>
<tr>
<th>Kritérium B 1</th>
<th>Body (max. 60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existuje preverenie a potvrdenie variantu nula (odôvodnenosť výstavby)?</td>
<td>10</td>
</tr>
<tr>
<td>Bola realizovaná architektonická súťaž podľa pravidel SKA?</td>
<td>50</td>
</tr>
<tr>
<td>Existuje dokumentácia k rozhodnutiu o volbe variantu?</td>
<td>spolu 10</td>
</tr>
<tr>
<td>Výber variantu obsahuje: Urbanistický kontext</td>
<td>(2)</td>
</tr>
<tr>
<td>Dostupnosť a doprava (vyvolaná dopravná zátaha)</td>
<td>(2)</td>
</tr>
<tr>
<td>Záber pôdy - kvalita pôdy (bonita)</td>
<td>(2)</td>
</tr>
<tr>
<td>Energetická hospodárnosť</td>
<td>(2)</td>
</tr>
<tr>
<td>Použitie ekologických materiálov</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Pod preverením a potvrdením variantu nula sa rozumie, že sa preverí a potvrdí, čo by sa stalo, ak by sa stavba nerealizovala. To môže byť v mnohých prípadoch zmysluplné, napríklad ak počty žiakov klesajú tak prudko, že školu bude treba do 3 rokov zatvoriť, potom nie je rozumné ju opravať. Preto je dôležité preveriť „nulový variant“.

Doklad stavebník:
Na získanie bodov sú potrebné doklady potvrdzujúce vyššie uvedené kritériá.

7.2.2 Definovanie overiteľných energetických a environmentálnych cieľov B 2
Body: 20 bodov (povinné kritérium)

Cieľ: Energetická a ekologická kvalita budovy môže byť hodnotená len v tom prípade, ak pri plánovaní zadávateľ predložil preskúmateľné ciele (porovnanie plán - skutočnosť). Tieto ciele sú písomne potvrdené ako súčasť zadávacích podmienok projektu. Tam, kde nie sú stanovené žiadne ciele, sa nedá dosiahnutie cieľa preverovať.

Vysvetlenie:
Popis cieľov sa môže uskutočniť troma spôsobmi:
1. Uvedenie celkového počtu bodov budovy pri hodnotení s katalógom CESBA
2. Uvedenie celkového počtu bodov a počtu bodov v jednotlivých 5 hodnotiacich kategóriách
3. Stanovenie minimálnych požiadavie pomocou jednotlivých kritérií (z katalógu CESBA alebo pomocou rozširujúcich kritérií neuvedených v katalógu CESBA)

Prvá možnosť necháva najväčšiu voľnosť pri plánovaní budovy. Príp. „má byť / je“ je v každom prípade možný len obmedzene - tam, kde neboli nastavené žiadne požiadavky ok-
rem požiadaviek na energie. Pri spôsobe č. 3 sú možné najpresnejšie predlohy, avšak flexibilita je najnižšia.

Na stanovenie energetickej hospodárnosti podľa variantu 3 je potrebné špecifikovať cieľové hodnoty minimálne pre nasledujúce údaje:

- merná potreba energie na vykurovanie (výpočet potreby tepla podľa metodíky vypracovania energetického certifikátu alebo podľa SW na optimalizáciu pasívnych domov PHPP)
- merná potreba energie na chladenie (výpočet potreby chladiť podľa metodíky vypracovania energetického certifikátu alebo podľa PHPP)
- celková primárna energia (kúrenie, chladenie, priprava teplej vody, elektrina pre pomocné zariadenia a elektrická energia na iné využitie) alebo primárna energia podľa PHPP
- špecifické emisie CO₂ (kúrenie, chladenie, priprava teplej vody, elektrina pre pomocné zariadenia, iné využitie elektrickej energie)
- príspevok fotovoltického zariadenia
- vzduchová priepustnosť n₅₀ (menšia než 1 h⁻¹).

Dále je potrebné stanoviť hodnoty, ako napríklad hodnota účinnosti rekuperácie vo vetracom zariadení alebo účinnosť systému vykurovania, môžu byť špecifikované dodatočne. Na stanovenie environmentálnych cieľov sa dajú použiť napríklad údaje o vylúčených stavebných materiáloch alebo o použití regionálnych stavebných materiálov.

### Kritérium B 2

<table>
<thead>
<tr>
<th>Body (max. 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciele sú pevne (a pisomne) stanovené podľa jedného z týchto variantov:</td>
</tr>
<tr>
<td>Variant 1: Hodnotenie budovy s katalógom CESBA, porovnanie plán - skutočnosť (celkový počet bodov)</td>
</tr>
<tr>
<td>Variant 2: Hodnotenie budovy s katalógom CESBA, porovnanie plán - skutočnosť (celkový počet bodov a počty bodov v jednotlivých kategóriách)</td>
</tr>
<tr>
<td>Variant 3: Doklad k jednotlivým kritériom (viac vyššie), napríklad výpočet potreby tepla, primárna energia atď.</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

### Doklad stavebník:
Základom na stanovenie cieľových hodnôt je lokalitný program (s veľkosťami miestnosti, intenzitou, spôsobom využitia, požadovanou teplotou, množstvom vetracieho vzduchu atď.) a prípadne súťažné podmienky či zmluvy, v ktorých sú ciele zadefinované.

### 7.2.3 Zjednodušený výpočet hospodárnosti v životnom cyklo B 3

**Body:** 40 bodov (povinné kritérium pri budovách nad 1000 m² úžitkovej plochy).

**Cieľ:** Cieľom je ekonomická optimalizácia energetickej koncepcie pri budove. Na základe životného cyklu stavebných prvkov a komponentov, ktoré majú vplyv na energetickú náročnosť budov, sa môže určiť, ktoré náklady navyše na energetické opatrenia môžu byť kompenzované nižším prevádzkovým nákladom.

**Vysvetlenie:**

Energetické opatrenia sa často nerealizujú, lebo náklady na stavbu sú minimizované a ekonomika nie je dostatočne preskúmaná. Aba sa tomuto postupu zabránilo, bude sa dodržiavať zjednodušené hodnotenie životného cyklu. Body sa budú pridieľať, ak je predložený zjednodušený výpočet nákladov v životnom cykle, ktorý sa opiera o STN ISO 15686-1:2013-05 (73 4005) so standardizovaným postupom a predpokladmi. Porovnáva sa ekonomika budovy vo vyhotovení zodpovedajúcom úrovni energetickej náročnosti budov, sa môže určiť, ktoré náklady navyše na energetické opatrenia môžu byť kompenzované nižším prevádzkovým nákladom.

**Výpočet:**

Energetické opatrenia sa často nerealizujú, lebo náklady na stavbu sú minimizované a ekonomika nie je dostatočne preskúmaná. Aba sa tomuto postupu zabránilo, bude sa dodržiavať zjednodušené hodnotenie životného cyklu. Body sa budú pridieľať, ak je predložený zjednodušený výpočet nákladov v životnom cykle, ktorý sa opiera o STN ISO 15686-1:2013-05 (73 4005) so standardizovaným postupom a predpokladmi. Porovnáva sa ekonomika budovy vo vyhotovení zodpovedajúcom úrovni energetickej náročnosti budov, sa môže určiť, ktoré náklady navyše na energetické opatrenia môžu byť kompenzované nižším prevádzkovým nákladom: anuita (návratnosť) nákladov stavby (každý stavebný prvok vyplývajúci en. náročnosť) anuita (návratnosť) honorárov – nákladov na stavbu priemerné ročné náklady na údržbu priemerné ročné náklady na energie.
Pre referenčný variant a vylepšený variant treba najprv popísať energeticky relevantné vlastnosti budovy a odhadnúť náklady navýšene energeticky relevantných konštrukcií a komponentov. Na základe ocenenia nákladov navýšene a výpočtov energetickej náročnosti na skúmaný variant sa utvára odhady hospodárnosti s nasledujúcimi predpokladiami:

- životnosť stavebných opatrení (izolácia, okná atď.) 40 rokov
- životnosť technického zariadenia budovy (vykurovací systém, chladenie atď.) 20 rokov
- doba hodnotenia (= doba úveru) 20 rokov
- priemerná miera inflácie 2,5%
- rast cien energií (všetké energia) 5,5%
- úroková miera 5%
- miestne náklady na energie preukázané vo výpočtoch.

<table>
<thead>
<tr>
<th>Kritérium B 3</th>
<th>Body (max. 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realizácia zjednodušeného výpočtu nákladov v životnom cykli, ktorý sa opiera o STN ISO 15686-1:2013-05 (73 4005), s vyššieuvvedenými predpokladmi.</td>
<td>40</td>
</tr>
</tbody>
</table>

Vo výpočtoch sa má brať zreteľ na zvyškovú hodnotu komponentov po konci doby hodnotenia. V odhodach hospodárnosti treba brať zreteľ na prípadné finančné podpory a menovite ich uviesť. Tiež treba brať do úvahy vedľajšie náklady na použitie energií a s tým spojené vplyvy na životné prostredie. Tieto náklady môžu byť definované ako príplatok k súčasným cenám energií.

Doklad stavebníka:

- Popis technických údajov energeticky relevantných stavebných prvkov a komponentov, výpočtu energetickej náročnosti pre referenčný a vylepšený variant, predloženie zjednodušeného výpočtu hospodárnosti.

Informácie, zdroje: STN ISO 15686-1:2013-05 (73 4005)

7.2.4 Produktový meneţment - zabudovanie „ekologických“ stav. výrobkov B 4

Body: 60 bodov

Cieľ: Účelom tohto kritéria je vyhnúť sa zvyšeným koncentráciám škodlivých látok v budove, predovšetkým vo vzduchu. To sa má dosiahnuť pomocou produktového manažmentu, ktorý predpokladá zabudovanie nízkoemisných stavebných výrobkov či výrobkov s nízkym obsahom škodlivín a principálne predchádzanie používania takých stavebných materiálov alebo v nich obsiahnutých látok, ktoré sú zdraviu škodlivé alebo majú nepriaznivý vplyv na životné prostredie. Ide tu tiež o zlepšenie hygieny a ochrany zdravia pri práci zavedením manažmentu stavebnej chémie, o zlepšenie kvality vzduchu v interiéri počas používania stavby a o redukciu budúcich nákladov pri demolicii stavby a pri zneškodnení odpadov z nej.

Vysvetlenie:

Budova je naša tretia koža. Viac ako 90% nášho života prežijeme v budovách. Takto určuje kvalita budovy a jej vnútorne ovzdušie celkom podstatnú kvalitu nášho života. O kvalite vzduchu vo vnútorných priestoroch okrem používanie materiálov a komponentov môžu spôsobiť zdravotné problémy. Tiež s ohľadom na technické požiadavky sa môže obsah škodlivín v stavebných materiáloch a tým aj vo vzduchu redukovať o 50 – 95%. Cielné plánovanie (napr. konštrukčná ochrana dreva miesto chemickej), udržiavateľné a vhodné čistiteľné konštrukcie, používanie vhodných materiálov, vypísanie ponuky zamerané na znižovanie obsahu škodlivín) vedú k zlepšeniu podmienok práce na stavbe a ke zvýšenému zdravotnému stavu. Taktu určuje kvalita budovy a jej vnútorné ovzdušie celkom podstatnú kvalitu nášho života. O kvalite vzduchu vo vnútorných priestoroch okrem používanie materiálov a komponentov môžu spôsobiť zdravotné problémy. Tiež s ohľadom na technické požiadavky sa môže obsah škodlivín v stavebných materiáloch a tým aj vo vzduchu redukovať o 50 – 95%. Cielné plánovanie (napr. konštrukčná ochrana dreva miesto chemickej), udržiavateľné a vhodné čistiteľné konštrukcie, používanie vhodných materiálov, vypísanie ponuky zamerané na znižovanie obsahu škodlivín) vedú k zlepšeniu podmienok práce na stavbe a ke zvýšenému zdravotnému stavu.

Produktový manažment znamená starostlivý výber a kontrolo zabudovaných stavebných konštrukcií (stavebné prvky a stavebná chémia) a možnosť predchádzať výskytu škodlivín vo vnútornom vzduchu. To vykonáva nezávislá tretia osoba (interná alebo externá) a zahŕňa
zakotvenie ekologických kritérií v projekte a pri udeľovaní zákazky, schválenie stavebných produktov pred použitím na stavenisku rovnako ako sústavne zabezpečenie kvality na stavenisku. Úspešná realizácia sa dokumentuje ako písomná správa od odborníkov a musí sa preskúsať dodatočným meraním kvality vzdachu. Uvádzame tu prehľad zodpovedajúci skupín produktov, ktoré môžu uvoľňovať potenciálne škodlivé skôrľiny v zodpovedajúcom množstve:

- Drevo a materiály na báze drev; dosky na báze drev; masívne drev s nátěrom (opracované); masívne drevo v prírodnom stave; drenené podlahy (parkety, palubovky).
- Podlahové krytiny: elastické podlahové krytiny; textile podlahové krytiny.
- Stavebná chémia: farby na steny; ostatné nátěry; lepidlá, predovšetkým pri prilepených konštrukciách; hydroizolačné materiály, parozábrany, tesnenie; iná stavebná chémia, veľkoplošné použitá.

Produktový manažment má brať odfad na tieto produkty:

- Všetky druhy stavebné chémie, ktorá sa použila na materiály ohraničujúce obálku (vnútorné alebo vonkajšie).
- Všetky druhy stavebných materiálov, ktoré sa nachádzajú na vnútornej strane (parotesné vrstva a stavebné materiály pred ňou).

Skutočný vplyv záleží samozrejme od použitého množstva a od predložených miestnych okrajových parametrov a veľkosť priestorov.

Ekologické kritériá pre produktový manažment sú súčasťou štandardizovaného výkazu prác. V nadz vnosti na zmluvu na vypracovanie zákazky treba v nej predipsť definované minimálne ekologické štandardy, ktoré ukladajú povinnosti stavebnej firme (napr. doklady o schválení, povinné správy). Kritériá pre projekty, ktoré by sa mohli využiť v rámci projektového manažmentu, ponúkajú predovšetkým nasledujúce programy:

- „Ekologické stavby a obstarávanie v regióne Bodamskeho jazera“ [Ekol. smernica 2007]
- „Ekologický nákup Vieâen“ AG 08 Vnútorné vybavenie [Ökokauf Wien]
- Iné: BEES – LCA softvérový nástroj; SimaPro – LCA softvérový nástroj, využíva Ecoinvent databázu; Ecoinvent – Swiss Centre for Life Cy cle Inventories; IBO Baustoffdatenbank – IBO databáza; ICE databáza –Katedra mechinického inžinierstva na Univerzite v Bath; Documentation SIA D 123 – SIA; INIES – francúzska databáza EPD francúzskych stavebných výrobkov.

Tieto katalógy kritérií obsahujú tiež ďalšie ekologické kritériá, ktoré nie sú predmetom týchto kritérií CESBA. Keď sa nepoužije jeden z týchto katalógov kritérií, je k dispozícii alternatívny výber kritérií kvality vnútorného vzduchu pre projekty na základe bauboo:klima:aktiv haus-Plattform für Kriterien und Produkte (www.baubook.at/kaahp - založená na katalógu kritérií oeg). Tu sú zaradené nasledujúce skupiny produktov a požiadaviek:

- Vnútorný priestor: nízkoemisné elastické podlahové krytiny; nízkoemisné textilné podlahové krytiny; nízkoemisné lepene konštrukcie; vyhýbanie sa emisiám z izolačných materiálov vo vnútornom vzdachu; vyhýbanie sa emisiám formaldehydu z materiálov na báze drev; vyhýbanie sa emisiám prchavých uhlovodíkov z materiálov na báze drev.
- Výber materiálu: nízkoemisné bitúmenové (asfaltové) prípravky; látky neobsahujúce karzinogéne látky; prípravky bez tázých kovov; prípravky bez SVOC; vyhýbanie sa vôľnému formaldehydu; vyhýbanie sa kyselinotvorným nátěrom; prípravky bez aromatických uhlovodíkov; prípravky bez VOC; nízkoemisné izolácie.

Pred začiatkom prác dodávateľské firmy pripravia zoznamy stavebných materiálov (dohodnuté stavebné produkty). Najmenej 2 týždne vopred spracuje dodávateľská firma plošný zoznam výhotovenia všetkých stavebných produktov a prípadne nevyhnutné osvedčenia o minimálnej ekologickej kvalite.

Všetky zabudované stavebné výrobky musia byť kontrolované a povolené interným odborníkom alebo externým konzultantom. Šúbeze s povinnými kontrolnýmiiçãoami na stavebnisku sa musia vykonáť aspoň 3 neohlášené kontroly stavby. Na stavenisku sa smú výhradne skladovať a používať produkty uvedené v tomto zozname. Dohodnuté produkty sa smú
na stavenisko dodávať iba v dohodnutom balení. Na konci projektu dostane investor koncovú správu (dokumentáciu) o vykonaných opatreniách.

<table>
<thead>
<tr>
<th>Kritérium B 4</th>
<th>Body (max. 60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jestvuje dokumentácia z optimalizácie ekológie stavby v rámci zadania návrhu, stavby a plánovania detailov?</td>
<td>10</td>
</tr>
<tr>
<td>Boli všetky diela na stavbe vypísané ekologicky? Kritériá na obsah škodlivín, medzné hodnoty škodlivín, definície dokladov napr. podľa baubook oea...</td>
<td>20</td>
</tr>
<tr>
<td>100 % všetkých diel vypísaných ekologicky</td>
<td>15</td>
</tr>
<tr>
<td>90 % všetkých diel vypísaných ekologicky</td>
<td>10</td>
</tr>
<tr>
<td>70 % všetkých diel vypísaných ekologicky</td>
<td></td>
</tr>
<tr>
<td>Boli deklarované všetky produkty všetkých diel na stavbe?</td>
<td>30</td>
</tr>
<tr>
<td>100 % všetkých diel deklarovaných</td>
<td>20</td>
</tr>
<tr>
<td>90 % všetkých diel deklarovaných</td>
<td>20</td>
</tr>
<tr>
<td>70 % všetkých diel deklarovaných</td>
<td>10</td>
</tr>
<tr>
<td>Jestvuje ekologický stavebný dozor a bola vykonávaná a dokumentovaná pravidelná kontrola použitia materiálov?</td>
<td>20</td>
</tr>
<tr>
<td>Zabezpečené počas celého stavebného procesu</td>
<td>10</td>
</tr>
<tr>
<td>Zabezpečené čiastočne</td>
<td></td>
</tr>
</tbody>
</table>

**Doklad stavebník:**
Interný alebo externý produktový manažment: vypísanie projektu - verejnej záklazky s popisom ekologických výkonov práč, produktovým zoznamom všetkých povolených stavebných produktov na stavenisku a konečná správa o zabezpečení kvality na stavenisku.

**Informácie, zdroje:** ÖkoKauf-Wien /2014/; Ökoleitfaden /2007/; baubook /2014/

### 7.2.5 Projektorve hodnotenie a energetická optimalizácia projektu B 5

**Body:** 60 bodov

**Ciel:** Cieľom hodnotenia je pomocou predbežného projektového hodnotenia energetické hospodárnosti budovy a na základe energetické optimalizácie posúdiť súčasný stav projektu a splnenie požiadavky na energeticky úspornú budovu, ako aj požiadávať investora a energetické certifikácie.

**Vysvetlenie:**
Projektant by mal v čase prípravy budovy viesť konzultácie so špecialistom, aby sa stanovili optimálne hrúbky tepelné izolácie, veľkosť a typ okien, spôsob vykurovania a prípravy teplej vody a optimálny zdroj tepla, súčasne treba splniť požiadavky energetického kritéria (STN 73 0540-2) a energetické certifikácie. Pri obytných budovách musia byť splnené požiadavky na potrebu energie na vykurovanie na základe požiadaviek investora a energetického kritéria.

**Vysvetlenie PHPP:**
Ako preukazujú objekty, v ktorých sa merala skutočná spotreba energie a porovnávala sa s výsledkami PHPP, zahŕňajú sa skutočné hodnoty energetického spotrebiete energeticky veľmi úsporných budov (pasívnych domov) s výpočtovými predpokladmi, ak sa použije overený výpočtový nástroj (napr. PHPP) a ak sa naplnia nasledujúce požiadavky:
- okrajové podmienky a používateľské požiadavky sú korektné popísané v podkladoch,
- energetická optimalizácia sa vykonáva priebežne vo všetkých fázach projektu,
- počas realizácie nedôjde k chybám a k výraznejším odchýlkom od projektu,
- energetické výpočty majú kvalitu zabezpečenú bezávislou stranou (certifikácia).

Bodované budú projekty, pre ktoré boli vykonané nasledujúce činnosti:

<table>
<thead>
<tr>
<th>Kritérium B 5</th>
<th>Body</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Činnosti (max. 60)

<table>
<thead>
<tr>
<th>Činnosť</th>
<th>Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definovanie lokalitného programu s veľkoťami miestnosti, spôsobom, intenzitou a dobu používania a požadovanou teplotou, množstvo vetracieho vzduchu v miestnostiach podľa hygienických požiadaviek</td>
<td>5</td>
</tr>
<tr>
<td>Požiadavky na tepelnotechnické posúdenie konštrukcií STN 73 0540 – 2, popis energetických parametrov vo vypísanej súťaži (napr. stavebno-fyzikálne hodnoty – súčinitel prechodu tepla stien, strechy a podlahy, hodnoty Uf, Ug, g pri oknách, účinnosť rekuperáčného výmenníka a elektrická účinnosť vetracej jednotky), kontrola sadruhu energetických aspektov návrhu s podkladm súťaže</td>
<td>5</td>
</tr>
<tr>
<td>Zahranutie vplyvu tepelných mostov pomocou detailných výpočtov výpočtov tepelných mostov alebo katalógu tepelných mostov a posúdenie splnenia požiadaviek na kritické detaily – hygienické kritérium podľa STN EN ISO 10211</td>
<td>5</td>
</tr>
<tr>
<td>Požiadavky na energetickú hospodárnosť</td>
<td></td>
</tr>
<tr>
<td>Výpočet potreby tepla na vykurovanie podľa STN 730540 – energet. kritérium</td>
<td>3</td>
</tr>
<tr>
<td>Výpočet potreby energie na vykurovanie podľa STN alebo PHPP</td>
<td>3</td>
</tr>
<tr>
<td>Výpočet potreby energie na pripravu teplej vody podľa STN alebo PHPP</td>
<td>3</td>
</tr>
<tr>
<td>Výpočet potreby energie na vetranie a chladenie podľa STN alebo PHPP</td>
<td>3</td>
</tr>
<tr>
<td>Výpočet potreby energie na osvetlenie podľa STN alebo PHPP</td>
<td>3</td>
</tr>
<tr>
<td>Sprevádzanie projektu počas realizácie:</td>
<td></td>
</tr>
<tr>
<td>Sledovanie výpočtov energet. náročnosti počas stavby a po vykonaní BDT</td>
<td>10</td>
</tr>
<tr>
<td>Protokol o realizácii testu vzduchovej priepustnosti – „blower door test“ (BDT)</td>
<td>3</td>
</tr>
<tr>
<td>Protokol o zaregulovaniu vetracej jednotky a jej uvedení do prevádzky</td>
<td>3</td>
</tr>
<tr>
<td>Protokol o hydradilickom vyregulovaní vykurovacej sustavy</td>
<td>3</td>
</tr>
<tr>
<td>Energetická certifikácia nezávislou oprávnenou osobou pomocou certifikačného postupu „Certifikovaný pasívny dom – kritériá pre pasívne domy s neobytvou funkcíou“ definovanou v Passivhaus Institut Darmstadt</td>
<td>15</td>
</tr>
</tbody>
</table>

Výsledky budov počítaných v PHPP boli potvrdené v mnohých porovnaniach meraní a výpočtov, rovnako ako boli potvrdené s výsledkami diameckej simulácie stavby. Tiež v porovnaniach výpočtových výsledkov s meranými budovami škôl a administratívnych budov sa ukazuje súlad, ak sa zahrnú princípy znižovania požiadaviek na chladenie.

**Doklad stavebník:**

Doklad od autorizovanej osoby alebo certifikačného pracoviska s overeným výpočtom energetického náročnosti podľa vyhlášky č. 311/2009 alebo podľa metodiky PHPP.

**Informácie, zdroje:** STN 73 0540 -1 až 4; STN EN ISO 6946 (730559); STN EN ISO 13370 (730562); STN EN ISO 10211 (730551); STN EN ISO 13 789 (730563); STN EN ISO 13 790 (730703); Zákon č. 555/2006 Z.z.; Vyhláška č. 311/2009; Certifikovaný... /PHI 2014/.

### 7.2.6 Informácia pre používateľa B 6

**Body:** 25 bodov  
**Ciel:** Používateľia majú významný vplyv na energetickú spotrebu budovy. Cieľom je dať hlavnej skupine používateľov k dispozícii informácie, ktoré vysvetľujú, ako sa môže budova energeticky efektívne prevádzkovať bez straty pohodlia.

**Vysvetlenie:**  
Používateľské informácie majú byť dostupné v používateľskej príručke. V nej majú byť uvedené najdôležitejšie aspekty týchto tém: teplota vnútorného vzduchu (regulácia kúrenie / chladenie); riadené vetranie a vetranie prirodzené oknami; tienenie; všeobecné osvetlenie a osvetlenie pracoviska; efektívna prevádzka iných spotrebičov energie (PC, tlačiarne atď.).

### Kritérium B 6

| Používateľska príručka špecifická pre danú budovu (obsah: vid vyššie) a informačné stretnutie sa užívateľmi | Body (max. 25) | 25 |
Doklad stavebník:
Predloženie používateľského príručky špecifické pre danú budovu a doklad o informačnom stretnutí pri našťahovaní sa užívateľov do budovy.

7.3 Energia a zásobovanie

Hodnotica kategória Energia a zásobovanie má poprednú úlohu v katalógu kritérií CES-BA. Cieľom je značne redukovať potrebu energie a škodlivé emisie vznikajúce pri prevádzke budovy. Aby sme dosiahli tento cieľ, treba znižiť potrebu tepla na vykurovanie (hodnotenie na úrovni koncového zdroja energie), a tiež zlepšiť účinnosť dodávky energií a zvoliť také nositelia energie, ktoré menej zaťažujú životné prostredie (hodnotenie na úrovni primárnej energie). Navyše sa tiež dá na úrovni primárnej energie hodnotiť v štandardnej energetickej bilancii budovy výrobu energie z fotovoltaických článkov a iných obnoviteľných zdrojov.


7.3.1 Potreba energie na vykurovanie C 1

Kriteria: max. 100 bodov (povinné kritérium)

**Ciel**: Zniženie potreby tepla na vykurovanie je dlhodobo účinná, dobre vypočítateľná možnosť na redukciu použitia energií a všetkých škodlivých emisií. Popri redukcii energií použitých na výrobu tepla dobre zateplená budova tiež znižuje straty zapríčinené prechodom tepla cez nepriehľadné a priehľadné konštrukcie a prispieva k vyššiemu pohodlí: výššie teploty vnútorných povrchov obálky budovy vyvolávajú pri rovnakej teplote vzduchu pocit vyššej teploty.

**Vysvetlenie:**
Pre posúdenie možno použiť metodiku energetickej certifikácie (EC) podľa našej legislatívy alebo metodiku programu PHPP.

<table>
<thead>
<tr>
<th>Kráterium C 1</th>
<th>Body (max.100)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Metodika EC</strong></td>
<td></td>
</tr>
<tr>
<td>Dosiahnutá energetická trieda A</td>
<td>100</td>
</tr>
<tr>
<td>Dosiahnutá energetická trieda B</td>
<td>25</td>
</tr>
<tr>
<td>Dosiahnutá energetická trieda C</td>
<td>0</td>
</tr>
<tr>
<td><strong>Metodika PHPP</strong></td>
<td></td>
</tr>
<tr>
<td>Merná potreba tepla na vykurovanie ( \text{PHPP} \leq 15 \text{ kWh/m}^2\text{a} )</td>
<td>100</td>
</tr>
<tr>
<td>( \text{MPT}<em>{\text{PHPP}} \geq 50 \text{ kWh/m}^2\text{a} ) pre ( A/V \geq 0,8 ) resp. ( \text{MPT}</em>{\text{PHPP}} \leq 30 \text{ kWh/m}^2\text{a} ) pre ( A/V \leq 0,2 )</td>
<td>25</td>
</tr>
</tbody>
</table>

Pri metodike EC sa pridelí minimálny počet bodov (25) pri dosiahnutí energetickej triedy C – budovy v triede D a horšej nezískavajú žiadne body. Pri posudzovaní podľa metodiky PHPP sa minimálny počet 25 bodov pridelí budove s mernou potrebou tepla na vykurovanie 30 až 50 kWh/m\(^2\)a pre A/V ≥ 0,2 resp. ≥ 0,8 (medzifahlé hodnoty: lineárna interpolácia), maximum je 100 bodov za MPT ≤ 15 kWh/m\(^2\)a. Pre iné hodnoty MPT bodové hodnoty dostane-
me pomocou lineárnej interpolácie: \( \text{body} = ((\text{MPT}_{\text{max}} – \text{MPT}_{\text{skúš}}) / (\text{MPT}_{\text{max}} – 15) \times 75) + 25 \).

Závislosť \( \text{MPT}_{\text{max}} \) od A/V – vid graf:

**Os X: A/V [1/m]**
**Os Y: MPT\(_{\text{PHPP}}\) [kWh/m\(^2\text{a}\)]**
- \( \text{MPT}_{\text{max}} \) (25 bodov)
- \( \text{MPT}_{\min} \) (100 bodov)

Doklad stavebník:
Energetický certifikát alebo výpočet PHPP (verzie 8 či vyššej, miestne climaticke údaje).
**Informácie, zdroje:** Vyhláška 364/2012 Z.z.; STN 73 0540, 1-4; Manuál PHPP 8 /2014/
7.3.2 Potreba energie na chladenie a vetranie C 2

Body: max. 100 bodov (povinné kritérium)

Cieľ: V stredoeurópskom podnebí má aktívne chladenie budov ako školy, materské školy, radnice alebo športové haly vedľajší význam. V predchádzajúcich rokoch sa častejšie vyskytovali so vzrastajúcim podielom okenných plôch budovy vybavených aktívnym chladením, v rámci optimalizácie energetických potrieb sa však má takáto spotreba energie minimalizovať.

Vysvetlenie:

Predpokladom pridelenia bodov je realizácia opatrenia na minimalizование tepelného zatáčenia ako je obmedzenie solárnych získov (vľádok okien, kvalita zasklenia, orientácia okien, trvalé alebo prechodné tienenie, redukcia vnútorných zdrojov tepla, aktivácia nosných konštrukcií - jadra, stropu, nočné chladenie).

<table>
<thead>
<tr>
<th>Kritérium C 2</th>
<th>Body (max.100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chladenie - energetická trieda A / budovu nie je potrebné aktívne chladiť</td>
<td>100</td>
</tr>
<tr>
<td>Chladenie - energetická trieda B</td>
<td>25</td>
</tr>
<tr>
<td>Chladenie - energetická trieda C</td>
<td>0</td>
</tr>
<tr>
<td>Metodika PHPP</td>
<td></td>
</tr>
<tr>
<td>Merná potreba energie na chladenie ( \text{PHPP} \leq 15 \text{ kWh/m}^2\text{a} ) (hraničná teplota 25°C)</td>
<td>100</td>
</tr>
<tr>
<td>MPCH( _{\text{PHPP}} ) 50 kWh/m²a</td>
<td>10</td>
</tr>
</tbody>
</table>

Pri metodike EC sa pridelí minimálny počet bodov (25) pri dosiahnutí energetickej triedy C – budovy v triede D a horšej neziskovajú žiadne body. Pri posudzovaní podľa metódiky PHPP sa minimálny počet 10 bodov pridelí budove s mernou potrebu energie na chladenie 50 kWh/m²a, maximum je 100 bodov za MPCH\( _{\text{PHPP}} \leq 15 \text{ kWh/m}^2\text{a} \). Pre iné hodnoty MPCH bodové hodnoty určíme lineárnou interpoláciou: \( \text{body} = ((50 – \text{MPCH}_{\text{hraničná}}) / 35) \times 90) + 10 \).

Podmienkou udelenia bodov je tiež splnenie požiadavky, že tepelná zátáža v ploche (chladiaci výkon) nepreruši podľa výpočtu PHPP hodnotu 5 W/m². Ako hranicu pre prekročenie teploty je potrebné vložiť do PHPP hodnotu 25°C.

Doklad stavebník:

Energetický certifikát alebo výpočet PHPP (verzie 8 či vyššie, miestne klimatické údaje).

Informácie, zdroje: Vyhláška 364/2012 Z.z.; Manuál PHPP 8 /2014/

7.3.3 Primárna energia C 3

Body: max. 125 bodov (povinné kritérium)

Cieľ: Cieľom je redukcia celkovej potreby energie budovy s ohľadom na celý reťazec výroby a distribúcie energie. Do primárnej energie sa započítavajú všetky miesta spotreby: potreba energie na vykurovanie; potreba energie na vetranie a chladenie; potreba energie na prípravu teplej vody; potreba elektrickej energie na osvetlenie – a v metodike PHPP sa započítava aj potreba elektrickej energie pre domáce spotrebiče či pracovné prostriedky.

Vysvetlenie:

Bodové ohodnotenie závisí od vypočítanej merné potreby primárnej energie a dosiahnutej energetickej triedy. Do úvahy sa berie celkové využitie energie v budove.

<table>
<thead>
<tr>
<th>Kritérium C 3</th>
<th>Body (max.125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosiahnutá energetická trieda A 0</td>
<td>125</td>
</tr>
<tr>
<td>Dosiahnutá energetická trieda A 1</td>
<td>80</td>
</tr>
<tr>
<td>Dosiahnutá energetická trieda B</td>
<td>40</td>
</tr>
<tr>
<td>Dosiahnutá energetická trieda C</td>
<td>0</td>
</tr>
<tr>
<td>Primárna energia - Metodika PHPP vrátane spotrebičov v budove</td>
<td></td>
</tr>
<tr>
<td>Merná potreba primárnej energie ( \text{PHPP} \leq 120 \text{ kWh/m}^2\text{a} )</td>
<td>125</td>
</tr>
<tr>
<td>Merná potreba primárnej energie ( \text{PHPP} \leq 240 \text{ kWh/m}^2\text{a} )</td>
<td>25</td>
</tr>
</tbody>
</table>
Pri výpočte PHPP treba použiť faktory primárnej energie z PHPP. Pre hodnoty MPPE medzi 120 kWh/m²a a 240 kWh/m²a prideľované bodové hodnoty určíme lineárnou interpoláciou: \[
body = ((240 - MPPE_{skuld}) / 120) \times 100 \quad + \quad 25
\]

**Doklad stavebník:**
Energetický certifikát alebo výpočet PHPP (verzie 8 či vyššej, miestne klimatické údaje).

**Informácie, zdroje:** Vyhláška 364/2012 Z.z.; Manuál PHPP 8 /2014/

### 7.3.3 Ekvivalent emisií CO₂ C 4

**Body:** max. 75 bodov (povinné kritérium)

**Cieľ:** Cieľom je minimalizácia ekvivalentu emisií CO₂ vyvolaných prevádzkovou budovou. Z dlhodobého hľadiska sa snažíme vytvárať budovy s neutrálnou až negatívnou bilanciou CO₂, ktoré v konštrukciách „uskladnia” toľko (či viac) CO₂, ako výstavbou a prevádzkovou uvoľnú.

**Vysvetlenie:**

<table>
<thead>
<tr>
<th>Kritérium C 4</th>
<th>Metodika EC aj PHPP</th>
<th>Body (max. 75)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merný ekvivalent emisií CO₂ 26 kg/m² za rok</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Merný ekvivalent emisií CO₂ 60 kg na m² za rok</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Merný ekvivalent emisií CO₂ viac ako 60 kg na m² za rok</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Pre hodnoty ekvivalentu emisií CO₂ medzi 26 a 60 kg/m²a prideľované bodové hodnoty určíme lineárnou interpoláciou: \[
body = ((60 - eCO₂_{skuld}) / 34) \times 65 \quad + \quad 10
\]

**Doklad stavebník:**
Energetický certifikát alebo výpočet CO₂ ekvivalentu podľa PHPP verzie 8.1 či novšej.

**Informácie, zdroje:** Vyhláška 364/2012 Z.z.;

### 7.3.5 Monitorovanie spotrieb energie C5

**Body:** 10 bodov

**Cieľ:** Cieľom je možnosť porovnania detailne zistené spotreby v porovnaní s výpočtovými predpoklady ako podkladu pre doregulovanie technických systémov (a tým úsporu energie).

**Vysvetlenie:**
Predpokladom bodovania je samostatné zistenie spotreby pre rôzne typy použitia (musí to byť najmenej pre typy spotreby energií, ktoré sú tu vymenané).

<table>
<thead>
<tr>
<th>Kritérium C 5</th>
<th>Body (max. 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samostatné zistenie spotreby energie na:</td>
<td></td>
</tr>
<tr>
<td>- vykurovanie</td>
<td></td>
</tr>
<tr>
<td>- chladenie (ak je použité)</td>
<td></td>
</tr>
<tr>
<td>- prápravu teplej vody</td>
<td></td>
</tr>
<tr>
<td>- pomocná elektrická energia na kúrenie, ohrev vody a pre solárny systém</td>
<td></td>
</tr>
<tr>
<td>- pomocná elektrická energia na vetranie a úpravu vzduchu (ak je použitá)</td>
<td></td>
</tr>
<tr>
<td>- pomocná elektrická energia na osvetlenie, prevádzku spotrebičov atď.</td>
<td></td>
</tr>
<tr>
<td>- príspevok fotovoltaiky (ak je použitá)</td>
<td></td>
</tr>
</tbody>
</table>
| Tieto namerané hodnoty možno zaznamenávať automaticky alebo manuálne. Pritom sa majú zabezpečiť aspoň mesačné hodnoty (v budovách s viacerými zónami zabezpečené po
zónach) – odporúča sa častiešie zaznamenávanie a prípadne jeho automatizácia. Odporúča sa spotrebu elektriny na osvetlenie meráť samostatne.

**Doklad stavebník:**
Dokumentácia systému zabezpečujúceho dáta na uvedené využitie energií a vymenova-nie osoby zodpovednej za odpočty a vzhodnocovanie údajov.

### 7.3.6 Spotreba vody / využitie dažďovej vody C6

**Body:** max. 20 bodov

**Cieľ:** V rámci materiálových tokov je cieľom tohto kritéria redukovať spotrebu pitnej vody a tiež zadržať zrážkovú vodu v územi (najmä pri silných dažďoch).

**Vysvetlenie:**
Hodnotia sa opatrenia, ktoré smerujú k redukcii spotreby pitnej vody a zvyšujú retenčnú schopnosť pri silných dažďoch, kde zadržaná voda pomaly vsakuje do podložia (nedochádza k poklesu spodných vôd), odparovaním zvlhčuje prostredie a zmierňuje mikroklimu.

<table>
<thead>
<tr>
<th>Kritérium C 6</th>
<th>Body (max. 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Použitie pákových batérií (redukcia spotreby vody aspoň o 50 % v porovnaní so štandardnými batériami).</td>
<td>5</td>
</tr>
<tr>
<td>Použitie bezdotykových batérií (použitie batérií s infračerveným snímačom a infračervených snímačov pri pisoároch).</td>
<td>5</td>
</tr>
<tr>
<td>Dvojité splachovanie resp. Stop tlačidlo (maximálne množstvo vody na spla-chovanie 6 l, pre pisoár maximum 3 l).</td>
<td>5</td>
</tr>
<tr>
<td>Použitie bezvodých pisoárov (osadenie výhradne bezvodými pisoáromi bez spotreby vody na ich splachovanie).</td>
<td>5</td>
</tr>
<tr>
<td>Využitie dažďovej vody v exteriéri (použitie dažďovej vody (napr. v nádrži) pre vonkajšie potreby, typicky na zalievanie zelene).</td>
<td>5</td>
</tr>
<tr>
<td>Zelená strecha (vybudovanie vegetačnej strechy na celej streche (či aspoň na polovici jej plochy – s pomerným bodovaním), minimálne 7 cm substrátu).</td>
<td>10</td>
</tr>
</tbody>
</table>

**Doklad stavebník:**
Dokumentácia potvrdzujúca realizáciu hodnotených opatrení.

### 7.4 Zdravie a komfort

Hodnotenie kvality vnútorného prostredia budov je založené na týchto kategóriách:

- Kritérium tepelného stavu prostredia v zime
- Kritérium tepelného stavu prostredia v lete
- Kvalita vzduchu a kritérium vetrania
- Kritérium vlhkosti
- Kritérium osvetlenia
- Akustické kritérium

Klasifikácia je založená na rozšírených kritérioch na energetické výpočty:

<table>
<thead>
<tr>
<th>Kritérium na vnútorné prostredie</th>
<th>Návrhové kritériá</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tepelný stav prostredia v zime</td>
<td>20 – 24 °C</td>
</tr>
<tr>
<td>Tepelný stav prostredia v lete</td>
<td>22 – 27 °C</td>
</tr>
<tr>
<td>Kvalita vzduchu, indikátor CO&lt;sub&gt;2&lt;/sub&gt;</td>
<td>500 ppm nad vonkajšou koncentráciou</td>
</tr>
<tr>
<td>Intenzita vetrania</td>
<td>1 l/s.m&lt;sup&gt;2&lt;/sup&gt;</td>
</tr>
<tr>
<td>Osvetlenie</td>
<td>Em &gt; 500 lx; UGR &lt; 19; 80 &lt; Ra</td>
</tr>
<tr>
<td>Akustika</td>
<td>hluk z vnút. prostredia &lt; 35 dB(A), z vonk. &lt; 55 dB(A)</td>
</tr>
<tr>
<td>Ožiarenosť hlavy sálavým teplom</td>
<td>max. 200 W/m&lt;sup&gt;2&lt;/sup&gt; (protisnečná ochrana)</td>
</tr>
<tr>
<td>Teplota povrchu podlahy</td>
<td>medzi 19 °C a 29 °C</td>
</tr>
</tbody>
</table>
Viditeľné stopy plesní, kondenzácie na žiadnom vnútornom povrchu pobytových priestorov

Teplota povrchu konštrukcií > krit. teplota pre vznik plesní pri relat. vlhkosti 80%

7.4.1 Tepelná pohoda v letnom období D 1

Body: max. 120 bodov (povinné kritérium)

Čieľ: Moderná architektúra s veľkými zaskleniami a zmeny spôsobu užívania budov vedú k tomu, že v našich zemepisných šírkach prevádzkové náklady na energie v lete dosahujú úroveň zimných nákladov alebo ich dokonca prekračujú. Vysoké solárne zisky v kombinácii s vnútornými ziskami tepla vedú bez vhodných protiopatrení k stratám tepelného komfortu alebo k výraznému zvýšeniu tepelného impulsu na jeho zabezpečenie. Realizácia príjemnej vlneného klímy prítom priniesla k pohodlie a k schopnosti koncentrácie na pracovisku a je pre projektanta osobitnou výzvou. Aj predpisy o hygine a bezpečnosti práce stanovujú limity, ktoré treba zaručiť. Optimálna sústava ploch okien, akumulačnej hmoty, vykurovania a vetrania, tieniacich zariadení, tepelnej izolácie a iných súvisiacich faktorov umožňuje používateľom komfortnú teplotu v každom ročnom období bez veľkých nárokov na spotrebu energie.

V katalógu kritérií CESBA sa preto hodnotí tepelná pohoda v letnom období. Principiálne dávame z dôvodov energetickej efektívnosti prednosť pasívnych systémom (tienenie, nočné chladienie, komínovému efektu v kombinácii s efektívnym tieniacim zariadením – podľa požiadaviek na príslušné oslnené plochy) pred aktívnymi chladiacimi systémami (plošné chladiace systémy, klimatizácia). Pri osadzovaní aktívnich chladiacich systémov je potrebné podrobná dokladovať dosiahnutie tepelné pohody podľa STN EN ISO 7730 pomocou simulácie kritického miestnosti a podľa normy STN ISO 13 791 a STN EN ISO 13 792. Pomocou aktívnich systémov sa dajú dosiahnuť požadované hodnoty (teplota a vlhkosť vzduchu) bezpečnejšie, ale tu sú významné okrem skutočnej tepelné pohody aj zvýšená spotreba energie a ďalšie parametre ako pocit prievanu alebo asymetria sálania.

Vysvetlenie:

Tepelná stabilita miestnosti v letnom období podľa normy /STN 73 05 40-2/:

<table>
<thead>
<tr>
<th>Druh budovy</th>
<th>Max. teplota v lete °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nevýrobné</td>
<td>27 °C</td>
</tr>
<tr>
<td>Nevýrobné obytné / ob. počas dňa max. 2 hod. (so súhlasom inv.)</td>
<td>27 °C / 29 °C</td>
</tr>
<tr>
<td>Ostatné s vnútornými zdrojmi tepla do 25 W/m³ vrátane</td>
<td>29,5 °C</td>
</tr>
<tr>
<td>Ostatné s vnútornými zdrojmi tepla nad 25 W/m³</td>
<td>31,5 °C</td>
</tr>
</tbody>
</table>

Kritérium D 1

<table>
<thead>
<tr>
<th>Budovy s menej než 35 % plochou okien a bez aktívneho chladienia</th>
<th>Body (max.100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Výpočet PHPP, prekročenie 25 °C &lt; 10 %</td>
<td>60</td>
</tr>
<tr>
<td>Výpočet PHPP, prekročenie 25 °C &lt; 5 %</td>
<td>120</td>
</tr>
<tr>
<td>Výpočet podľa STN EN ISO 13 792 (minimálne kritické miestnosti)</td>
<td>dtto</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Budovy s viac než 35 % plochou okien a/alebo s aktívnym chladiením</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Neprekročenie 27 °C bez aktívneho chladiaceho systému</td>
<td>90</td>
</tr>
<tr>
<td>Neprekročenie 27 °C s aktívneho chladiením</td>
<td>20</td>
</tr>
<tr>
<td>VÝHNOTIE sa pocitu prievanu pri aktívnom chladiení (v &lt; 0,1 m/s, λT &lt; 2 K)</td>
<td>30</td>
</tr>
</tbody>
</table>

Doklad stavebník:

Pre budovy bez inštalovaného chladienia alebo s pasívnym chladiacim systémom a s plochou okien do 35 % fasády (na J.JV,JZ,V,Z) a bez neobyčajných vnútorných ziskov (obvyklé kancelárske využitie, triedy, športové halby) výpočet tepelného pohodí stacionárneho alebo kvázi-stacionárnej metódy podľa STN EN ISO 13 792 či PHPP. Pre ostatné budovy (viac prešklené či napr. (divadelné sály, kinosály, poštové určené) výpočet najvyššej teploty vnútorného vzduchu, chladiaceho výkonu a potreby energie na chladienie dynamickou metódou. Pre budovy s aktívnym chladiením doloženie inštalovaného chladiaceho výkonu, údajov o spôsobe chladienia (plošné chladienie, vzduchové chladienie od podlahy či stropu, kombino-
vané systémy atď.) a výpočtové potvrdenie splnenia kvalitatívnych požiadaviek na počit po-
hody (najmä vyhnutie sa počtu prievanu).

**Informácie, zdroje:** STN EN ISO 7730; STN EN 15251; STN EN ISO 13 792;

7.4.2 Riadené vetranie – hygiена a ochrana proti hluku D 2

**Body:** 40 bodov

**Cieľ:** Minimalizácia rušivých hlukov z okolitého prostredia (najmä dopravy) a vo vnútri bu-
dovy (najmä z technológií prevádzky). Hluk z exteriéru je rozhodujúci pre koncepciu vetrania a pre požiadavky na vzduchovú nepriezvučnosť obalových a výplňových konštrukcií. Výslednú hladinu hluku z technológií (najčastejšie z vetrania) určujú ich technické parametre, vzduchová nepriezvučnosť deliacich konštrukcií a pohľadovosť povrchov v chránených priestoroch. Riadené vetranie má spôsobiť k zlepšeniu kvality vzduchu a k zlepšeniu kvality pobytu vo vnútornom priestore, pričom je potrebné aby užívateľa nevnímali hluk zo zariadenia ako ru-
šivý – požiadavka jeho súčet hladiny hluku technológií a pozadia neprekročil maximálne dovolené hodnoty.

**Vysvetlenie:**

V objektoch s riadeným vetraním je nutné zapracovať technické riešenia zamedzujúce prenos hluku od výustiek, zo vzduchotechnickej jednotky do miestnosti a k šíreniu zvuku medzi miestnosťami. Súčasne je dôležité zabrániť prenosu hluku medzi interiérom a exteriérom a medzi odlišnými prevádzkami v budove. V budovách bez núteného vetrania je možné projektový predpoklad dodrať len v lokalitách, kde sú dodržané exteriérové hygienické limity na fasáde (resp. výplňových konštrukciách) pred chránenými priestorom. Riadené vetranie má prispievať k zlepšeniu kvality vzduchu a k zlepšeniu kvality pobytu vo vnútornom priestore, pričom je potrebné aby užívateľa nevnímali hluk zo zariadenia ako ru-
šivý – požiadavka je aby súčet hladiny hluku technológií a pozadia neprekročil maximálne dovolené hodnoty.

**Kritérium D 2**

<table>
<thead>
<tr>
<th><strong>Body (max. 40)</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>V objektoch s núteným vetraním sú zapracované opatrenia proti prenosu z technologických zariadení, z exteriéru a medzi susednými miestnostami. Je dodržaná minimálna požadovaná vzduchová nepriezvučnosť deliacich konštrukcií. Súčasne sú v chránených priestoroch splnené hygienické požiadavky na na L_{Aeq} resp. L_{Amax,p} podľa kategórie priestoru.</td>
</tr>
</tbody>
</table>
| V objektoch bez núteného vetrania (vetranie otvorením okna) sú doľahené merania ze hlukových štúdii o dodržaní požadovaných hygienických po-
žiadaviek na fasáde (2 m pred oknami chránených miestností) a následne vo vnútornom chránenom priestore (L_{Aeq,p}= 40 dB školy a kancelárie, 30 dB ma-
terská škola). | 40 |
| V najexponovanejších miestnostiach bola meraním zistená ekvivalentná hla-
dina hluku minimálne o 10% lepšia ako sú dovolené limity podľa kategórie priestoru. Navrhnuté deliace konštrukcie splňajú požiadavky na zníženie hla-
diny hluku. | |

**Doklad stavebník:**

Výpočtová prognóza a meranie požadovaných hodnôt – viď vyššie (Vysvetlenie).

**Informácie, zdroje:** STN 73 0532; Vyhl. 549/2007 Z.z.

7.4.3 Denné osvetlenie D 3

**Body:** max. 40 bodov

**Cieľ:** Snažíme sa dosiahnuť príjemný psychofyzikologický stav, potrebný pre účinnú prácu i odpočinok spôsobujúci biologické požiadavky na intenzitu a kvalitu osvetlenia, na architektonických vlastnostiach priestoru (farby, tvaru) a na stave
zraku. Pokiaľ ide o riešenie budovy, závisí od tienenia okolitou zástavbou alebo inými pre-kážkami, plochy osvetlovacích otvorov, optickej kvality výplňových konštrukcií, geometrie miestností a umiestnenia a sklonu okien.

**Vysvetlenie:**

Pri zmysluplnom využití disponibilného denného svetla môže byť v celej budove znižené použitie energie pre umelé osvetlenie a tým aj spotreba energie. Poddelenie osvetlenia denným svetlom má zásadný vplyv na kvalitu mikroklimy a celoročnú spotrebu elektrickej energie na umelé osvetlenie.

**Kritérium D 3**

<table>
<thead>
<tr>
<th>Body (max. 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intenzita osvetlenia: minimálne 80% z celkovej pracovnej plochy ma požadovanú min. hodnotu činiteľa denného osvetlenia ( e_{priem} \geq 1.5% ) (bočné osvetlenie), resp. ( e_{priem} \geq 5% ) (horné osvetlenie).</td>
</tr>
<tr>
<td>Rovnomernosť osvetlenia: dodržané rovnomerné rozloženie svetla v celej ploche 0,2.</td>
</tr>
<tr>
<td>Výhľad: z každého pracovného miesta je zabezpečený vizuálny kontakt s exteriérom.</td>
</tr>
<tr>
<td>Regulácia jasu z priameho slnečného žiarenia: inštalované regulovateľné solárne tieňice umožňujú reguláciu priameho slnečného jasu bez zásadného zniženia intenzity difúzného svetla.</td>
</tr>
<tr>
<td>Intenzita umelého osvetlenia: zabezpečenie požadovanej intenzity umelého osvetlenia na pracovnej ploche pre konkrétny typ práce min. v intenzite podľa požiadaviek normy (300 - 500 lx).</td>
</tr>
<tr>
<td>Regulácia osvetlenia: automatická riadenie osvetlenia na pracovisku v závislosti od jeho vyťaženosti.</td>
</tr>
<tr>
<td>Eliminácia priameho a odrazeného oslnenia: od pracovných zariadení (monitorov, pracovných plôch), ako i od samotných svietidiel.</td>
</tr>
</tbody>
</table>

**Doklad stavebník:**

Výpočtová prognoza a meranie, fotografie, situácia s vyznačením okolitej zástavby.

**Informácie, zdroje:** STN 73 0580-1; STN 73 0580-2; EN STN 12464-1

**7.5 Stavebné materiály a konštrukcie**

**7.5.1 OI3 ekologický index obálky (či celkovej hmoty) budovy E 1**

<table>
<thead>
<tr>
<th>Body: max. 200 bodov</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CIeľ:</strong> Ekologicke vplyvy výstavby budovy v súčasnom stavebnom štandarde sú asi tak vysoké ako ekologicke vplyvy spojené s prevádzkou pasívneho domu počas 100 rokov. Preto je ekologicke optimalizacia vplyvov výstavby významnou súčasťou udržateľnej výstavby. Pod ekologicke optimalizaciou rozumieeme minimalizацию materiálových tokov a emisií pri procese výroby stavebných materiálov a pri stavbe budovy. Tento optimalizačny proces sa dá zjednodušiť a ilustrovať napr. environmentálnym indexom izolačnej obály (alebo celkovej hmoty) budovy (OI3).</td>
</tr>
<tr>
<td>**Všeobecne akceptovaným ekvivalentom pre hodnotenie vplyvu stavebných materiálov a konštrukcií na životné prostredie je z globálneho hľadiska hodnota produkcia emisií CO(<em>{2})ekv. spoločne s vyhodnotením viazaného primárnej energie a z regionálneho hľadiska hodnota produkcia emisií SO(</em>{2})ekv. OI3 prepočíta tieto tri dôležité kategórie ochrany životného prostredia pre každý štvorcový meter stavebného prvku na bodovej stupni od 0 do 100.</td>
</tr>
<tr>
<td>Pre určenie OI3 spravidla využívame softvér, ktorý z údajov v databázach materiálov spočíta výslednú hodnotu tohto ukazovateľa. Pre použitie v hodnotení CESBA odporúčame program ECOSOFT vo verzii 4.0 či výššej, podrobnosti k výpočtu nájdete v publikácii CESBA tool SK /2014/ či v OI3-smerniciach /IBO 2004/. Možno použiť aj softvér Ecotech či GEQ.</td>
</tr>
</tbody>
</table>

Tento projekt je realizovaný v rámci operačného programu CENTRAL EUROPE a spolufinancovaný Európskym fondom pre regionálny rozvoj.
Viazaná primárna energia (EE (embodied energy), označovaná aj ako síva energia alebo zabudovaná primárna energia PEI) je energia vynaložená na ťažbu surovín, prepravu a jej následné spracovanie na finálne stavebné materiály a výrobky, vztahujúca sa na jednotku výroby, najčastejšie na kilogram.

Emisie CO$\text{2}$ekv (ECO$_2$, potenciál globálneho oteplovania GWP) zahŕňajú emisie látok prispievajúcich k skleníkovému efektu. CO$_2$ má medzi nimi dominantnú úlohu, preto sa používa ako ekvivalent (ďalšími látkami prispievajúcimi ku GWP sú napríklad CH$_4$, N$_2$O, SF$_6$). Hodnotu emisií CO$\text{2}$ekv stavebného materiálu reprezentuje, kolko kilogramov CO$_2$ sa uvoľní pri jeho výrobe, doprave a zabudovaní na stavbe („cradle to gate”). Niektoré materiály môžu mať v tomto hodnotení zápornú bilanciu - napríklad drevo, ak počas rastu strom absorbuje viac CO$_2$, než sa uvoľní počas jeho spracovania a vytvorenia finálneho produktu.

Emisie SO$\text{2}$ekv (ESO$_2$, potenciál acidifikácie AP) sú vyjadrené v ekvivalentoch množstva SO$_2$ (údaj zahŕňa aj ďalšie plyny podieľajúce sa na acidifikácii, hlavne N$_2$O a NH$_3$). Plyny sa naviažu v atmosfére s vodou a vytvárajú kyslé dažde, ktoré regionálne poškodzujú rastliny, živočíchy, pôdu, vodu a aj budovy. Hodnota emisií SO$\text{2}$ekv stavebného materiálu predstavuje kolko kilogramov SO$_2$ekv sa vypustí do ovzdušia pri jeho výrobe.

Vplyv viazanej primárnej energie a emisií CO$\text{2}$ekv resp. SO$\text{2}$ekv vyjadrujú ekoindexy $OI_{\text{PEI}}$, $OI_{\text{GWP}}$ a $OI_{\text{AP}}$. Ich bodové vyjadrenie odráža "uvádza na spolocného menovateľa" rôzne jednotky a miery vplyvu na prostredie.

Environmentálny index konštrukcie (indikátor $OI_{\text{KON}}$) sa vzťahuje na 1m$^2$ konštrukcie a zohľadňuje tretinové váhy vyššie uvedených ekoindexov (vztiahnutých na m$^2$ konštrukcie), je definovaný vzťahom: $OI_{\text{KON}} = \frac{1}{3} OI_{\text{PEI}} + \frac{1}{3} OI_{\text{GWP}} + \frac{1}{3} OI_{\text{AP}}$.

Environmentálny index OI3 využívaný v CESBA ($OI_{3}\text{BG3,BZF}$) zahŕňa všetky konštrukcie izolačnej obálky budovy, deliace konštrukcie (priečky, stropy) a základy. Prepočítava zistenú environmentálnu zátatku na vztahujúcich plochách budovy (vykurované plochy a 50% ostatných ploch). Hodnotí nielen vplyv samotného zabudovania prvku, no aj vplyv jeho údržby či výmenného po dobu predpokladanej životnosti stavby 100 rokov. Zvyšené využívanie obnoviteľných zdrojov a ekologicky optimalizované výrobné procesy vedú k lepší hodnote $OI_{3}$ budovy.

Vysvetlenie:

Environmentalne vplyvy výstavby budovy vznikajú pri výrobnom procese a pôsobia už v čase, keď ekologické vplyvy z používania len vznikajú. Preto je pre ochranu klímy dôležitá aj ekologická optimalizácia výroby a výstavby (napríklad CO$_2$-certifikáty pre stavebnú výrobu). Environmentálna kvalita konštrukcie je reprezentovaná indikátorm $OI_{3\text{KON}}$ s bodovým hodnotením. Napríklad obvodová stena s hodnotou 70 je typická pre štandardné konštrukcie, podľa ktoré sa hodnoty optimalizovaných konštrukcií môžu byť dosiahnuté hodnotou 15 alebo nižšia. Budovy sú hodnotené o to lepšie, o čo nižšie sa ich ekologický vplyv meraný ekoindexom OI3. Body pre hodnotenie v CESBA sú vypočítané zo vzťahu $Body = \left((-1/3) \times OI3\right) + 300$.

<table>
<thead>
<tr>
<th>Kritérium E1</th>
<th>Body (max.200)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OI3-hodnota 300 a menej</td>
<td>200</td>
</tr>
<tr>
<td>OI3-hodnota medzi 300 a 900: X = $((-1/3) \times OI3) + 300$</td>
<td>X</td>
</tr>
<tr>
<td>OI3-hodnota 900 a viac</td>
<td>0</td>
</tr>
</tbody>
</table>
Doklad stavebník:
Výpočet a dokumentácia v programe na výpočet OI3 (napr. ECOSOFT 4.0 a vyšší).
Informácie, zdroje: OI3-smernica /IBO 2004/; BEES; SimaPro; Ecoinvent; IBO-Baustoffdatenbank; ICE-database; Documentation SIA D 123; INIES;

7.6 Očakávaný vývoj CESBA
Vo všeobecnosti možno ideálne udržateľnú budovu charakterizovať ako budovu, ktorá
• spotrebovala minimum energie a neobnoviteľných zdrojov na výstavbu,
• potrebuje minimum energie a zdrojov na svoju prevádzku (vrátane dopravy užívateľov),
• spotrebuje minimum energie a zdrojov pri svojej likvidácii či recyklácii (rekonštrukcií)
• a zároveň poskytuje svojim užívateľom komfortné prostredie vrátane estetickéj hodnoty.

7.6.1 Udržateľnosť iniciatívy CESBA
Iniciatíva CESBA je založená na aktívnej činnosti svojich členov. Je typickou štruktúrou založenou na princípe "fungovania zdola nahor". Pracovné a komunikačnou platformou je CESBA -wiki, kde môže každý nájsť podklady a informácie pre svoju prácu, ale môže tiež obsah CESBA-wiki ovplyvniť a rozšíriť. Predpokladá sa, že na CESBA-wiki budú uložené a zadarmo k dispozícii:
• nástroje na pripravu, projektovanie, hodnotenie aj prevádzkovanie budov v zhode s princípmi využívania obnoviteľných zdrojov a principov udržateľnej výstavby vôbec,
• informácie o účastníkoch pracovnej siete jeho užívateľov,
• informácie o príbuzných programoch EÚ a ich výsledkoch aj príklady "dobrej praxe" ako inšpirácia aj ako podklad pre demonstráciu výhodnosťi tohto smenu výstavby,
• informácie pre harmonizáciu existujúcich komerčných nástrojov hodnotenia, ktorá povedie k možnosti lepšieho porovnávania výsledku hodnotenia, možnosti použití ich častí ako "modulu" do otvorených hodnotiacich nástrojov a k väčšej zrozumiteľnosti výsledkov,
• informácie, ktoré komerčné hodnotiace nástroje sú harmonizované CESBA.

Vzhľadom k otvorenosti má CESBA-wiki potenciál byť pre svojich užívateľov užitočná a umožniť im praktické uľahčenie každodennej praxe. Má byť hybnou silou, ktorá zabezpečí dlhodobý vývoj princípov CESBA vo väzbe na konkrétnu situáciu na trhu a v spoločnosti.

7.6.2 Očakávaný vývoj hodnotiaceho nástroja CESBA
Výstupom z programu CEC5 je predovšetkým základný medzinárodný nástroj na hodnotenie miery udržateľnosti budov, CESBA Tool, použitý pre pilotnú certifikáciu v rámci projektu. Spracovaný bol v anglickom jazyku a je označovaný ako CESBA Generic Tool. Je nástrojom "otvoreným", v ktorom sa môžu vymieňať jednotlivé kritériá. V súčasnosti ide predovšetkým o nástroje pre hodnotenie energetické hospodárnosti budov, ktoré sú už teraz implementované vo všetkých štátoch EÚ, no používajú odlišnú metodiku aj kritériá hodnotenia. Je tiež nutné zohľadniť miestne hodnotenie ekologickej zátazke zabudované v jednotlivých materiáloch a stavebných technológiách, klimatické podmienky a lokálne nároky (seizmická, odolnosť proti extrémnomu vetru a podobné).
LITERATÚRA

ACE, 1995: Europe and Architecture Tomorrow. Brusel, Architects Council of Europe
Anderson, O., 1995: Europe and Architecture Tomorrow, ACE, Bruxelles
Borák, D., 2012b: Veřejná architektonická soutěž, v: Filozofie navrhování budov dle principů trvale udržitelné výstavby, Národní stavební centrum, Brno
Borák, D., 2012f: Udržateľnosť obývateľského priestoru, v: Filozofia navrhovaní budov podľa princípov trvalo udržateľnej výstavby, Národné stavebné centrum, Brno
CEC5, 2014: on-line, cit. 6/2014, dostupné z: cec5.enks.sk/
Certifikovaný... 2014: Certifikovaný pasívny dom, Kritériá pre neobytné budovy, Passivhaus Institut, Darmstadt, on-line, cit. 1/2014, dostupné z: www.iepd.sk/clenovia/zaujemca-o-clenstvo
CESBA tool student, 2014: CESBA tool SK Student, on-line, cit. 10/2014, dostupné z: www.fa.stuba.sk/docs/ueea/up/CESBA-hodnotenie-v09-student.xls
CESBA tool, 2014: CESBA tool SK, on-line, cit. 10/2014, dostupné z: www.fa.stuba.sk/docs/ueea/up/CESBA-hodnotenie-v09.xls
Drevostavby... 2014: Drevostavby - štatút Značky kvality, on-line, cit. 9/2014, dostupné z: www.drevostavby-zsdsr.sk/znacka-kvality
EPBD-II 2010: Smernica európskeho parlamentu a rady 2010/31/EÚ: o energetickej
Fialová, I.- Tichá, J., 2008: Martin Rajniš. Praha


Garlík, B., 2012: Udržateľná výstavba a fenomén inteligentnej budovy, v: Navrhovanie inteligentných budov a ich automatizácie podľa princípov trvalo udržateľnej výstavby, Národné stavebné centrum, Brno

Garlík, B., 2012: Filozofia stavebníctva a stavebného priemyslu, v: Navrhovanie inteligentných budov a ich automatizácie podľa princípov trvalo udržateľnej výstavby, Národné stavebné centrum, Brno


Hannover Kronberg, 2006, on-line, cit. 9/2006, dostupné z: www.oekosiedlungen.de/kronsberg/steckbrief.htm

Happy Planet index, 2014: on-line, cit. 1/2014, dostupné z: www.happyplanetindex.org/data


Hudec, M., 2013: Pasívni domy z prírodních materiálů, Grada, Praha


IEPD, 2014: O pasívnom dome, on-line, cit. 9/2014, dostupné z: iepd.sk/pasivny-dom/o-pasivnom-dome

Keppl, J., 2001: Ekologicky viazaná tvorba, Vydavateľstvo STU, Bratislava


Mae-Wan Ho, 2012: on-line, cit. 9/2013, dostupné z: permaculture-news.org/2012/01/13/living-green-and-circular/


Nagy, E., 2002: Nízkoenergetický ekologický dům, Jaga, Bratislava


OL3, 2004: OL3-Indikátor: IBO - smernica na výpočet ekologických veličin pre budovy IBO, IBO Eigenverlag, Wien

ÖkoKauf-Wien, 2013: Kriterienkataloge für Innenausstattung, on-line, cit. 10/2013, dostupné z: www.wien.gv.at/umweltschutz/ekokauf/ergebnisse.html#innenausstattung

Ökoleitfaden, 2007: Ökoleitfaden: Bau / Kriterienkatalog für die ökologische Ausschreibung. IBO im Auftrag der Projektgruppe... (IBO-Endbericht vom 17.01.2007)

PHPP 8, 2013: manuél... xxxx


STN 73 0540:2012: Tepelnotechnické vlastnosti stavebných konštrukcií a budov. Tepelná ochrana budov

STN 73 0580 -1:1992: Denné osvetlenie budov. Časť 1: Základné požiadavky

STN 73 0580 -2:1992: Denné osvetlenie budov. Časť 2: Denné osvetlenie budov na bývanie

STN 73 4301:2005: Budovy na bývanie
STN EN 15 251:2007: Vstupné údaje o vnútornom prostredí budov na navrhovanie a hodnotenie energetickej hospodárnosti budov – kvalita vzduchu, te-pelný stav prostredia, osvetlenie a akustika
STN EN ISO 7 370:2006: Ergonómia tepelného prostredia. Analy-tické určova-nie a interpre-tácia tepelnej pohody pomocou výpočtu ukazovateľov PMV a PPD a kritérií miestnej tepelnej pohody
Sullivan, L.H., 2014: Form Ever Follows Function (The Tall Office Building Artistically Considered, 1896), on-line, cit. 1/2014, dostupné z: academ-ics.triton.edu/faculty/feitzman/tallofficebuilding.html
Timber... 2014: Timber, design & Technology, on-line, cit. 6/2014, dostupné z: www.timberdesignandtechnology.com/
Vonka, M, 2012: Software pro certifikaci, v: Úvod do problematiky environmentální hodnoce-ní a certifikace budov dle principů trvale udržitelné výstavby, Národní stavební cen-trum, Brno
Vonka, M., 2011: Komplexní hodnocení budou metodou SBToolCZ. In II . Sympozium Integr-ované navrhování a hodnocení budou 2011, STP, Praha
Vyhlaška č. 311/2009 Z.z. z 13. júla 2009, ktorou sa ustanovujú podrobnosti o výpočte energetickej hospodárnosti budov a obsah energetického certifikátu
Vyhláška 364/2012 Z.z. z 12. novembra 2012, ktorou sa vykonáva zákon č. 555/2005 Z. z. o energetickej hospodárnosti budov a o zmene a doplnení niektorých zákonov v znení neskorších predpisov


Vyhláška: 549/2007 Z.z. zo 16. augusta 2007, ktorou sa ustanovujú podrobnosti o prípustných hodnotách hluku, infravzuku a vibrácií a o požiadavkách na objektíváziu hluku, infravzuku a vibrácií v životnom prostredí


William McDonough + Partners, 2013: on-line, cit. 9/2013, dostupné z: www.mcdonoughpartners.com/design_approach/philosophy


Zelená... 1990: Zelená kniha EÚ o mestskom prostredí, KOM (90) 218. Európska komisia, Brusel